
CS 4414 Final Report
Team 5

Christopher Dare
cdare77@vt.edu
Virginia Tech

Computer Science, Mathematics

Dan Folescu
dan1345@vt.edu
Virginia Tech

Computer Science, Mathematics

Figure 1: Folding configurations of Trp-cage under increasing Langevin collision frequency

ABSTRACT
In this report, our team examines computational methods for ap-
proximating the secondary structure of the mini-protein Trp-cage.
Compared to most proteins, Trp-cage is a fairly small protein (only
20 molecules) and therefore allows much faster computation of
state minimization techniques for our protein’s overall potential
energy. In particular, this paper presents a background on meth-
ods of numerical approximation and presents three iteration-based
algorithms which attempt to optimize our minimization of the Trp-
cage folding funnel.

1 INTRODUCTION
Protein folding is the process in which a protein (that is, a chain
of amino-acids joined by peptide bonds) transitions to its intrin-
sic structure of lowest energy. The question of how a protein folds
in its natural environment has been studied by biochemists for al-
most a century — however, research over the past several decades
has shown that protein misfolding is a primary cause of certain
diseases [5]. Consequently, the correlation between diseases and
protein folding led to vast amounts of research on the subject.

The protein folding problem is by no means an easy or almost-
solved problem. Originally studied in academia, the methodology
of predicting folding patterns has changed dramatically due to the
advent of scientific computing. [2]. Previously, researchers such as
Cyrus Levinthal noted that the number of possible folding config-
urations was so large that it was impossible for a protein to test
all possible configurations in the time experimentally observed —
this became known as Levinthal’s paradox [6]. Consequently, it
was proposed that proteins must fold in a sequence of interme-
diate states, which are inherent to the protein itself; however, the
problem of finding such intermediate states was nearly impossible
to compute without the use of CPU’s and GPU’s.

Over time the advances in technology directly contributed to
the ability to compute larger and larger protein folding patterns.
However, due to the vast number of such patterns (asmentioned by
Levinthal), the computational complexity of computing an exact
solution for many proteins is still far too complex to solve for most
modern computers. Therefore, methods and recent advances in the
field of numerical approximation often find themselves applied to
the field of biological computing, so that researchers are able to
approach the correct structure of much larger proteins within a
reasonable window of time.

Using numerical methods, researchers in the field are able to
reduced the constraints on a problem and observe how a protein
folds in a multitude of chemical environments. In fact, the manip-
ulation of a protein’s environment turns out to be an irreplaceable
tool for finding the correct structure of a protein.

2 FOLDING LANDSCAPE
In general, almost no proteins arrange themselves into linear chains
of atoms. The amino-acids which constitute a protein can arrange
into a multitude of geometric shapes, and in particular one has
that an amino-acid interacts with its surrounding neighbors and
sometimes other distant amino-acids. Therefore, a protein always
possesses some sort of potential energy corresponding to the in-
teraction of its atoms with one another, either through chemical
bonds or Van der Waals forces or other means. If only considering
the bond-lengths, angles, torsion, electrostatic forces, and Van der

Waals forces, a typical potential energy function may look like:

U =
∑
bonds

kb (b − b0)2

+
∑
angles

kθ (θ − θ0)2

+
∑

torsion

∑
n

kφ,n [1 + cos(nφ + φn)]

=
∑
i

∑
j>i

qiдj

ri j
(Electrostatic)

=
∑
i

∑
j>i

Ai j

r12i j
−
Bi j

r6i j
(Van der Waals)

The problem may be simplified if one simply considering the lat-
tice structure on hydrophobic-hydrophilic sequences, as pointed
out by [4]. In general, interactions between hydrophobic and hy-
drophilic amino-acids almost always satisfy the following inequiv-
alence relations:

EPP > EHP > EHH

2EHP > EPP + EHH

where EPP denotes the interaction energy between hydrophilic
and hydrophilic, EHP denotes the interaction energy between hy-
drophilic and hydrophobic, and EHH denotes the interaction en-
ergy between hydrophobic and hydrophobic. Any choice of coeffi-
cients works, but we will stick to the choice of coefficients in [4]
given byEHH = −2.3, EHP = −1, EPP = 0. This leads to the follow-
ing potential equation for a sequence of hydrophobic-hydrophilic
amino-acids:

H =
∑
i<j

Eσi ,σj∆(γi − γj)

where γk indicates the position of an amino-acid in the lattice and
∆(γi − γj) = 1 if and only if amino-acids at i and j are adjacent. If
looking at the 2D lattice structure of our protein Trp-cage, we find
local minima corresponding to the following lattice structures:

However, it is worth noting that our results later on will likely
not look remotely close to the figures above since we are consider-
ing a protein in three dimensions. Moreover, the frequent bending
patterns of our protein may indicate a torsion element which be-
comes present in higher dimensions (since there cannot exist any
variation in the normal vector on a plane).

2.1 Folding Funnels
Though lattice structures are useful for predicting what a final sec-
ondary structure of a protein may look like, one often wants to ob-
serve all possible configurations holistically. Around the mid 90’s,
researchers such as Peter Wolynes devised a configuration space
of all possible protein configurations in a similar fashion to how
one considers the space of all particle trajectories in Hamiltonian
mechanics. In the original paper [1], the authors describe how the
configuration space of all protein configurations with respect to n
variables is essentially the same as that protein’s potential energy
function with respect to the n variables. In other words, each pro-
tein has a unique energy potential function whose local minima
represent intermediate folding states and whose global minimum
represents the protein’s intrinsic folding.Wolynes gives the follow-
ing example in Figure 2

Figure 2: A 1-dimensional folding funnel of a protein vary-
ing over a single parameter (e.g. bond-angle)

Going back to our potential energy equation for U , we can see
that there are far more parameters than a single independent vari-
able, and thus we often observe higher-dimensional energy land-
scapes.

Figure 3: A 2-dimensional folding funnel embedded in R3

Though one may expect that this does not make a difference in
terms of methodology, it turns out that certain numerical methods

2

tend to only work well with a high number (i.e. in lower dimen-
sions) — therefore, we restrict our attention going forward to ap-
proximation methods which minimize manifolds (or point-data) of
arbitrary dimension.

3 NUMERICAL APPROXIMATION
As previously mentioned, the problem of folding a protein can be
extremely computationally expensive and is often impractical for
larger protein structures. As we saw in Section 2, this problem can
be reduced to finding the global minimum on the folding funnel —
hence approximating the secondary structure is in fact equivalent
to approximating the global minimum on the protein’s respective
folding funnel.

In this section, we explore three numerical methods which are
commonly used for minimization problems:

(i) Random Search
(ii) Simulated Annealing
(iii) Nelder-Mead

We apply each numerical method to a smooth 2-dimensional func-
tion (so that the analytic solution may be easily computed) and
hence compare cost and accuracy.

3.1 Random Search
As the name suggests, random search is a numerical minimization
method which simply relies on randomness to eventually stum-
ble upon the correct solution. An immediate benefit that one can
observe of random search is that no two runs should be identi-
cal, and thus increasing the number of runs should increase the
likelihood of finding the global minima. To clarify, the rationale
behind the random search technique is much like the infinite mon-
key theorem, which states that if a monkey hits random keys on
a typewriter for an infinite amount of time, it will eventually pro-
duce one of Shakespeare’s plays. Again, we don’t have an infinite
amount of time, so one generally wants that each run finds the best
local minima relative to the random start position.

In general, the algorithm for random search on a function f :
X → Y can be broken down to the following:

Step A: Choose a random starting point x0 ∈ f (X) and fix some
radius r > 0.

Step B: AssumingX is of dimensionn and rSnx0 denotes the re-scaling
of Sn by a factor of r centered at x0, put a uniform distri-
bution on rSn and pick a random point y ∈ X ∩ rSnx0 . If
f (x0) > f (y)move to the new position y — otherwise, sam-
ple a new point.

Thus, we begin sampling points around our initial random point
until we find a neighboring position of lesser value, in which case
we update our current position. As one should be able to tell, this
method is prone to getting trapped in local minima if our radius
r > 0 is not large enough. That is, if we get stuck in a minima such
that the next minima is of distance 0 < r < R away, we will never
move outside the current minima.

When testing random search on an arbitrary 2-dimensional fold-
ing funnel, we found that the accuracy was astonishingly low at
17%. Moreover, it took about 143 seconds to run 100 iterations on
Mathematica 11.3, giving an average runtime of 1.43 seconds.

3.2 Simulated Annealing
Similar to the random search technique, simulated annealing relies
on a distribution in order to predict which neighboring point to
look at. However, simulated annealing is actually quite more com-
plex than simply picking random points and evaluating the func-
tion locally. The minimization method originates from the practice
of annealing metals — that is, heating and cooling metal in a fash-
ion to maximize the strength of crystal bonds [3].

To motivate its algorithm, when annealing metals the smith will
often try to cool the metal as slowly as possible after its been
heated. While the metal is hot, the bonds are sporadic and may
fluctuate between weaker or stronger formations — however, by
cooling slowly the smith may increase the probability that the lat-
tices align in a way that does not admit any cracks or weak points.

In a similar fashion, simulated annealing has a distribution λt (f)
representing the heat of our metal that slowly decreases as our
time t increases. Much like random search, if we are at some posi-
tion x0 we look at a random neighboring point y; however, we no
longer base our decision to jump if f (x0) > f (y) alone, but instead
according to our distribution λt (f) which factors in f at y. Since
λt (f) is a initially close to uniform, the movement of our current
position is sporadic just like the crystals of a metal — this prevents
us from getting stuck locally at some minima. However, as t grows
we are much less likely to jump to a point y with f (x0) ≤ f (y),
hopefully bringing us closer to the globabl minimum.

Again, the algorithm for simulated annealing on a function f :
X → Y with respect to some distribution λt can be broken down
as follows:

Step A: Choose a random starting point x0 ∈ f (X) and fix some
radius r > 0.

Step B: Take t → ∞
i) At each t , pick a random pointy ∈ X ∩rSnx 0. Based on the

distribution λt (f), choose whether to stay at x0 or move
to y.

When testing simulated annealing on an arbitrary 2-dimensional
folding funnel, we found that the accuracy was much better that
random search at 63 %. Moreover, simulated annealing ran much
faster on Mathematica 11.3, executing all 100 iterations in 43 sec-
onds for an average runtime of 0.43 seconds.

3.3 Nelder-Mead
Our last minimization technique is slightlymore technical than the
previous two and thus the complete algorithms will not be fully
covered since it does not offer any further insight into this paper’s
results.

From a general viewpoint, the Nelder-Mead technique essen-
tially allows one to keep track of (n + 1)-points

x1,x2, . . . ,xn+1

which are “somewhat” close to one another. As long as the points
are distinct and no k points lie on the same (k − 1)-dimensional
hyper-plane, one can construct a convex hull or simplex (i.e. the
generalization of a triangle to n-dimensions). For example, the tri-
angle is the 2-simplex and the tetrahedron is the 3-simplex con-
structed out of 4 triangles glued along their boundary. At each step,
instead ofmoving toward the direction of our best point, we choose

3

to move away from our worst point — call it xi . We then calculate
the barycenter (i.e. center of mass) bi of our remaining points and
reflect xi to a new point x ′i on the other side of bi .

The reader should note that since these points are chosen to be
“somewhat” close to one another, the Nedler-Meadmethod is fairly
prone to getting trapped at local minima. When testing the Nelder-
Mead method, we got the highest accuracy of 99% and second-best
average runtime of 0.5 seconds.

4 METHODS
With all preliminary information covered, this section outlines the
procedures our team used in attempt to find the correct folding of
the protein Trp-cage:

ASN LEU TYR ILE GLN TRP LEU LYS ASP GLY GLY PRO SER

SER GLY ARG PRO PRO PRO SER

Before outlining our team’s methods used to approximate the
secondary structure of Trp-cage, the reader should recall that the
folding funnel of an arbitrary protein is often scattered with an
enormous number of local minima which represent our protein’s
intermediate folding states. Consequently, one wishes to employ
a numerical method which is not naturally prone to getting stuck
in local minima. Of the three methods outlined above, this criteria
indicates simulated annealing is the best method to approximate
the minima of a folding funnel — therefore, we chose to utilize
simulated annealing in all of our trials.

4.1 Protocol 1: Variation of Annealing Length
As described in Section 3, one expects that by cooling a material
more slowly, the probability that a lattice structure properly aligns
increases. Therefore, a natural followup question is whether the
same principle applies when folding proteins.

For this experiment, all control variables are held constant ex-
cept the temperature and the rate at which we cool our protein. In
each trial, we heat our protein to its melting temperature of 317K
in about 0.2 ns and proceed to heat it to a maximum of 400K in 1 ns.
From there we cool our protein from 400K to 350K inX ns and then
back to the melting temperature of 317K in Y ns. Our values of X
and Y for each trial are as follows:

Trial X Y

1 2 ns 2 ns
2 3 ns 2 ns
3 2 ns 3 ns
4 3 ns 3 ns

Based off our hypothesis, we expect that the minimum poten-
tial energy will decrease from trial 1 to trial 4. By constructing a
simple BASH script which runs four distinct input files through
AMBER (corresponding to our four trials), we are able to monitor
the potential energy as a function of time while we raise and lower
the temperature.

4.2 Protocol 2: Effect of Repeated Annealing on
Minimization

The section above on variation of annealing lengths indicates that
it is best to run simulated annealing at longer lengths in order to
achieve an optimal local minima. However, this raises the question
of whether our minimization process benefits from multiple simu-
lated annealing runs. If this is the case, our protein will need less
and less energy to break out of local minima since it is gradually
approaching the global minimum. Therefore, the temperature to
which we heat the protein should gradually decrease in each con-
secutive annealing run. For this particular experiment, we define
a single “multiple annealing” run as the following:

(1) Use SANDER to shift the protein to the nearest minima
(2) Heat the protein to its melting point (317K)
(3) Hold the protein in equilibrium at its melting point for 20 ns
(4) Run simulated annealing at amaximum temperature of 400K

for 6 ns
(5) Run simulated annealing at amaximum temperature of 390K

for 6 ns
(6) Run simulated annealing at amaximum temperature of 380K

for 6 ns
(7) Run simulated annealing at amaximum temperature of 370K

for 6 ns
(8) Run simulated annealing at amaximum temperature of 360K

for 6 ns

Instead of resuming each simulated annealing at the last state
of the previous annealing, we calculate the frame of minimum po-
tential energy (sufficiently far after the heating phase) and use that
as input — the hope is that this will ensure our protein is on the
correct trajectory to the global minimum.

4.3 Protocol 3: Effects of Langevin Collision
Constant on Minimization

Each AMBER run which we have undertaken has been done in
the setting of Langevin dynamics — that is, a modeling approach
which tries to replicate the viscosity of solvents present during pro-
tein folding in real life. In AMBER, we can alter such dynamics
through two variables: temperature and γln (the Langevin damp-
ing constant).

Since our team’s previous trials were all dependent on tempera-
ture alone, we chose to focus our final protocol in terms of viscos-
ity. Therefore, for a fixed value of γln we define a trial for our third
protocol to be a run at the following:

(1) Use SANDER to find local minima in EPTOT.
(2) Heat protein to 320K(7200 PS)
(3) Hold protein in equilibrium at 320K(7200 PS)
(4) Cool to 100K(7200 PS)

In particular, our team only runs three trials corresponding to
γln values γln = 0.001 (which we define to be “low viscosity”),
γln = 1 (which we define to be a “medium viscosity”), and γln = 5
(which we define to be a “high viscosity”).

4

5 RESULTS
In this section we further describe each protocol executed, present
graphical representations of our results, and attempt to describe
the nature of such results.

5.1 Protocol 1: Variation of Annealing Length
As previously described in Section 4.1, we predict that by increas-
ing the length of annealing our protein will reach a better min-
imum. That is, we expect a direct correlation between length of
annealing and energy minimization. After running the four trials
described in Section 4.1 above, our team found the following re-
sults:

Figure 4: (Protocol 1, Trial 1): Minimum Energy -483.339

Figure 5: (Protocol1, Trial 2): Minimum Energy -470.837

Before interpreting the results, one should note that the min-
imum of trial 1 occurs at the very beginning stages before even
heating the molecule. Since the same SANDER + heating output is
provided as input to each trial and each trial is heated to 400K at the
same rate, this minima is likely caused by a degree of randomness.
By chopping off the first 75 frames of trial 1, we see that a more ac-
curate minima occurs at frame 8264 of energy -472.978. Therefore,

Figure 6: (Protocol 1, Trial 3): Minimum Energy -477.864

Figure 7: (Protocol1, Trial 4): Minimum Energy -490.976

it is easy to see that there is a correlation between increasing the
annealing time of our protein and the minimum energy state after
annealing.

Lastly, we visualize how our protein folds across all four anneal-
ing trials using VMD’s ribbon representation in Figures 8 through
11 below.

Clearly, the slight alterations in a simulated annealing run can
lead to vastly different results in terms of the structure of a protein.
We are able to see, however, that there is a significant torsion el-
ement present in the first seven amino-acids (asparagine through
leucine) for each trial, indicating that global minimum (i.e. intrin-
sic secondary structure) has a torsion element along this chain as
well.

5

Figure 8: Minimal Configuration of Trial 1 (Protocol 1)

Figure 9: Minimal Configuration of Trial 2 (Protocol 1)

Figure 10: Minimal Configuration of Trial 3 (Protocol 1)

5.2 Protocol 2: Effect of Repeated Annealing on
Minimization

Since the overall objective of these experiments is to find the sec-
ondary structure of Trp-cage, we choose to use the optimum an-
nealing length from Protocol 1 to ensure the best results. That is,
we define a single annealing ‘run’ as heating the protein to some
temperature X > 317K , cooling to a new value Y in 3 ns, and then
cooling back down to 317K in 3 ns.

Figure 11: Minimal Configuration of Trial 4 (Protocol 1)

Assuming we use some text processing script (which in our case
is the process_mdout.perl script adapted from AMBER’s tu-
torial) to enumerate our frames by potential energy, we may con-
vert our previous minimal energy frame to input using the follow-
ing:

echo '$AMBERHOME/bin/cpptraj
../minip.prmtop << EOF' >> ptraj_1.sh

cat summary.EPTOT | gawk
'BEGIN{min=1000;minidx=-1} {if
($1>1000 && $2<min) {min=$2; minidx=$1}}
END {print minidx}' | grep -m 1 -f -
../annealing1.out | gawk
'{a = $3 / 1000; print "trajin
../annealing1.mdcrd", a, a}' >> ptraj_1.sh

echo 'trajout min_run1.rst restart' >> ptraj_1.sh
chmod +x ptraj_1.sh

The reader should take note of the following condition in our code
above:

$1>1000 && $2<min

The first number (in our example summary.EPTOT) is precisely
the frame number, while the second number is our energy poten-
tial value. The condition that the only frames we consider are after
the first 1000 ensures that the minima we record occurs after our
annealing, and not as some random perturbation at the beginning;
thiswill allow us to accuratelymeasure how effectivemultiple runs
of annealing truly is.

Our team ran exactly four of the “multiple annealing” trials, as
outlined in Section 4.2. For the sake of clarity, we will not show
the 20 energy potential plots associated to each single annealing
run; instead, we will present how the minimum potential energy
state of each annealing run varied within each trial. For the first
trial, we observed the minimum energy state fluctuate as depicted
in Figure 12 as we increased the number of times annealing was
applied.

6

Figure 12: (Protocol 2, Trial 1): Minimum Energy Achieved
vs. Annealing Run

One can easily recognize that there is no strong correlation be-
tween consecutive annealing and minimization based on the data
of the first run. In fact, we get very similar results for runs 2-4:

Figure 13: (Protocol 2, Trial 2)

Figure 14: (Protocol 2, Trial 3)

Figure 15: (Protocol 2, Trial 4)

Therefore, we conclude that there is no evidence which shows
consecutive annealing achieves a betterminimum that a single sim-
ulated annealing run.

5.3 Protocol 3: Effects of Langevin Collision
Constant on Minimization

We have the following results for tests on low (Figure 16), medium
(Figure 17), and high (Figure 18) relative gamma constants.

We also include the plots of energy potentials for low, medium,
and high γln values in figures 19, 20, and 21, respectively.

Figure 16: Low Gamma(γln = 0.001) Configuration - EPTOT
= -600 kcal/mol

5.3.1 Optimized Langevin Constant - Longer Run. From experi-
mentation, we see that an optimal gamma constant is not too low,
lest there not be enough interaction with the protein to adequately
preform molecular dynamics on our time scale. Through experi-
mentation by Professor Onufriev’s lab(No current reference), we
know that the optimal gamma constant is also not too high and,
from a computational/dynamic perspective, is actually 0.01.We use
this gamma constant, as well as heating/equilibrium/cooling expe-
rience from the previous tests to create the following protocol:

(1) Use SANDER to find local minima in EPTOT.
(2) Heat protein to 320K(25000 PS)
(3) Hold protein in equilibrium at 320K(25000 PS)

7

Figure 17: Mid Gamma(γln = 1) Configuration - EPTOT = -
620 kcal/mol

Figure 18: High Gamma(γln = 5) Configuration - EPTOT =
-620 kcal/mol

0 5000 10000 15000 20000 25000 30000
Steps(1000/PS)

-700

-600

-500

-400

-300

E
P

T
O

T
(k

ca
l/

m
o
l)

Figure 19: Low Gamma EPTOT vs Steps

(4) Cool to 0K(50000 PS)
From this protocol, we have energy potential seen in Figure 22,

and the protein structure seen in 23.

6 CONCLUSION
In summary, our team tested three different methods to minimize
the potential energy of Trp-cage’s folding funnel and thus approx-
imate the protein’s secondary structure:

(1) Increasing the cooling time of simulated annealing

0 5000 10000 15000 20000 25000 30000
Steps(1000/PS)

-700

-600

-500

-400

-300

E
P

T
O

T
(k

ca
l/

m
o

l)

Figure 20: Mid Gamma EPTOT vs Steps

0 5000 10000 15000 20000 25000 30000
Steps(1000/PS)

-700

-600

-500

-400

-300

E
P

T
O

T
(k

ca
l/

m
o
l)

Figure 21: High Gamma EPTOT vs Steps

0 20000 40000 60000 80000 1e+05
Steps(1000/PS)

-800

-700

-600

-500

-400

-300

E
P

T
O

T
(k

ca
l/

m
o
l)

Figure 22: Optimal Gamma EPTOT vs Steps

(2) Run consecutive annealing tests at decreasingmaximum tem-
peratures

(3) Decrease the viscosity of the environment
From the results of our first experiment, we found that there’s

a direct correlation between how long a protein cools in simulated
8

annealing and the minimum energy state the protein settles in. In
particular, this affirmed our hypothesis that simulated annealing
on protein structures behaves similarly to annealing metals.

In our second experiment, we ran several “multiple annealing”
trials to test whether there was any correlation between consecu-
tive annealing and minimization of potential energy. However, by
mapping theminimum energy of each annealing run, wewere able
to find that there is indeed no strong correlation between the two.
In particular, this implies that minimization does not necessarily
benefit from running an algorithm multiple times, but instead by
running longer, more accurate trials.

Lastly, we attempted to run our simulated annealing at several
viscosity values to see whether this had any affect on the protein’s
potential energy. As one may expect, particle collisions increase a
protein’s total energy and therefore cause more sporadic protein
behavior. Therefore, we found that lower viscosity values led to
much better minimization results.

Ultimately, our lowest potential energy was achieved via simu-
lated annealing in a solution of viscosity γln = 0.01, yielding ex-
actly -701 kcal/mol and the following secondary structure in Figure
23

Figure 23: Best Secondary Structure Approximation

7 PROJECT ASSESSMENT
In conclusion, this project presented an opportunity to engagewith
material that most (if not all) of the class had not seen previously.
Our team was able to run numerous experiments on VMD soft-
ware, as well as new equipment (e.g. Virginia Tech ARC supercom-
puter).

Due to the diverse range of students’ experience with compu-
tational tools (e.g. BASH scripting, awk, vim), some of the prelim-
inary material seemed repetitive. If this course were restricted to
computer science majors alone, we feel that we would have been
able to get into much more relevant material.

It was interesting to learn about various numerical methods,
both in their boons and shortcomings. Contrary to our paragraph
above, this was likely a topic that was repetitive for some applied
math majors yet essential for many other students.

Overall, our team found this capstone project to be an enjoyable
experience.

REFERENCES
[1] Joseph D. Bryngelson, José Nelson Onuchic, Nicholas D. Socci, and Peter G.

Wolynes. 1995. Funnels, Pathways, and the Energy Landscape of Protein Fold-
ing: A Synthesis. PROTEINS: Structure, Function, and Genetics 21 (1995), 167–195.
https://doi.org/10.1002/prot.340210302

[2] Ding Chen Y, Nie H F, and et al. 2007. Protein Folding: Then and Now. Arch
Biochem Biophys 469, 1 (2007), 4–19.

[3] A. Das and B. K. Chakrabarti. 2005. Quantum Annealing and Related Optimiza-
tion Methods. Lecture Note in Physics 679 (2005).

[4] Hao Li, Robert Helling, Chao Tang, and Ned Wingreen. 1996. Emergence of
Preferred Structures in a Simple Model of Protein Folding. Science, New Series
273, 5275 (1996), 666–669.

[5] Enrique Reynaud. 2010. Protein Misfolding and Degenerative Diseases. Nature
Education 3, 9 (2010), 22.

[6] R. Zwanzig, A. Szabo, and B. Bagchi. 1992. Levinthal’s Paradox. Proc Natl Acad
Sci USA 89, 1 (1992), 20–22.

9

https://doi.org/10.1002/prot.340210302

8 CODES DEVELOPED

l a ng ev i n dynamics s imu l a t i o n s
&c n t r l

n tx = 1 , i r e s t =0 ,
imin = 0 , n s t l im = 100000000 ,
d t = 0 . 0 0 1 , n t t = 3 , gamma_ln = 0 . 0 1 ,
temp0 = 1 0 0 . 0 , tempi = 0 . 0 ,
n t c = 2 , n t f = 2 ,
i g =−1 ,
i gb =8 , ntb = 0 , s a l t c o n = 0 . 1 4 5 ,
ntwx = 1000 , ntwe = 0 ,
ntwr = 1000 , n tp r = 1000 ,
cu t = 9 9 9 . 0 , rgbmax = 9 9 9 .
nmropt = 1 , /

&wt type = 'TEMP0 ' ,
i s t e p 1 =0 , i s t e p 2 =25000000 ,

v a l u e1 = 0 . 0 , v a l u e2 = 3 2 0 . 0 /
&wt type = 'TEMP0 ' ,
i s t e p 1 =25000001 , i s t e p 2 =50000000 ,

v a l u e1 = 3 2 0 . 0 , v a l u e2 = 3 2 0 . 0 /
&wt type = 'TEMP0 ' ,
i s t e p 1 =50000001 , i s t e p 2 =100000000 ,

v a l u e1 = 3 2 0 . 0 , v a l u e2 = 0 . 0 /
&wt type = 'END ' /

Figure 24: Optimal Gamma Test Code

l a ng ev i n dynamics s imu l a t i o n s
&c n t r l

n tx = 1 , i r e s t =0 ,
imin = 0 , n s t l im = 43200000 ,
d t = 0 . 0 0 0 5 , n t t = 3 , gamma_ln = 0 . 0 0 1 ,
temp0 = 1 0 0 . 0 , tempi = 0 . 0 ,
n t c = 2 , n t f = 2 ,
i g =−1 ,
i gb =8 , ntb = 0 , s a l t c o n = 0 . 1 4 5 ,
ntwx = 1000 , ntwe = 0 ,
ntwr = 1000 , n tp r = 1000 ,
cu t = 9 9 9 . 0 , rgbmax = 9 9 9 .
nmropt = 1 , /

&wt type = 'TEMP0 ' ,
i s t e p 1 =0 , i s t e p 2 =14400000 ,

v a l u e1 = 0 . 0 , v a l u e2 = 3 2 0 . 0 /
&wt type = 'TEMP0 ' ,
i s t e p 1 =14400001 , i s t e p 2 =28800000 ,

v a l u e1 = 3 2 0 . 0 , v a l u e2 = 3 2 0 . 0 /
&wt type = 'TEMP0 ' ,
i s t e p 1 =28800001 , i s t e p 2 =43200000 ,

v a l u e1 = 3 2 0 . 0 , v a l u e2 = 1 0 0 . 0 /
&wt type = 'END ' /

Figure 25: Gamma Test Code Prototype

10

	Abstract
	1 Introduction
	2 Folding Landscape
	2.1 Folding Funnels

	3 Numerical Approximation
	3.1 Random Search
	3.2 Simulated Annealing
	3.3 Nelder-Mead

	4 Methods
	4.1 Protocol 1: Variation of Annealing Length
	4.2 Protocol 2: Effect of Repeated Annealing on Minimization
	4.3 Protocol 3: Effects of Langevin Collision Constant on Minimization

	5 Results
	5.1 Protocol 1: Variation of Annealing Length
	5.2 Protocol 2: Effect of Repeated Annealing on Minimization
	5.3 Protocol 3: Effects of Langevin Collision Constant on Minimization

	6 Conclusion
	7 Project Assessment
	References
	8 Codes Developed

