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ABSTRACT

This thesis presents a general background on discrete Morse theory, as developed by Robin

Forman, as well as an introduction to computability and computational complexity. Since

general point-set data equipped with a smooth structure can admit a triangulation [19],

discrete Morse theory finds numerous applications in data analysis which can range from

traffic control to geographical interpretation. Currently, there are various methods which

convert point-set data to simplicial complexes or piecewise-smooth manifolds; however, this

is not the focus of the thesis. Instead, this thesis will show that the Morse homology of such

data is computable in the classical sense of Turing decidability, bound the complexity of

finding the Morse homology of a given simplicial complex, and provide a measure for when

this is more efficient than simplicial homology.



Turing Decidability and Computational Complexity of Morse

Homology

Christopher Dare

GENERAL AUDIENCE ABSTRACT

With the growing prevalence of data in the technological world, there is an emerging need

to identify geometric properties (such as holes and boundaries) to data sets. However, it is

often fruitless to employ an algorithm if it is known to be too computationally expensive

(or even worse, not computable in the traditional sense). However, discrete Morse theory

was originally formulated to provide a simplified manner of calculating these geometric

properties on discrete sets. Therefore, this thesis outlines the general background of Dis-

crete Morse theory and formulates the computational cost of computing specific geometric

algorithms from the Discrete Morse perspective.
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Chapter 1

Introduction

1.1 Preliminaries

Before we introduce both the intricacies of discrete Morse theory and the challenging devel-

opment of Morse homology, we must first build up an understanding of simplicial complexes

and how Morse functions fit into the subject. As a forward, the application of discrete Morse

theory to simplicial complexes can be greatly simplified to piecewise-linear Morse theory,

as developed by Thomas Banchoff [1] in the late 1960s and early 1970s. However, the com-

putational analyses of piecewise-linear Morse theory and of discrete Morse theory are very

similar (particularly on simplicial complexes), and thus we choose to formulate the compu-

tational efficiency in the more general case. This will allow us to analyze smooth manifolds

(observed under a triangulation) as well as general simplicial complexes of point-set data.

We begin this chapter by introducing the basic concepts and definitions of discrete Morse

theory and the relevant terms in algebraic combinatorics.

1.2 Simplicial Complexes and Discrete Morse Functions

At this point, little has been addressed regarding the significance of discrete Morse functions

and why they are used in tandem with simplices. As noted by Robin Forman in A User’s

Guide to Discrete Morse Theory, “there is a close relationship between the topology of a

smooth manifold M and the critical points of a smooth function f on M” [5]. The reader
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may consider, for example, how a rational map of degree 2 on S2 (or equivalently the

Riemannian sphere Ĉ) has only 2 critical points (as discussed by [12]). Forman himself

considered Morse theory as a distant generalization of the extreme value theorem, since a

compact manifold must always provide a maximum and minimum to a continuous function.

In general, discrete Morse functions provide a powerful analogy to smooth Morse functions,

in that they extract the same topological data without the need for stable and unstable

manifolds or compactifications.

Throughout the remainder of this thesis, we will use P(A) to denote the power set of a

set A. With that said, we may now formally define a (finite) simplicial complex, using the

notation from [8]:

Definition 1.1 (Simplicial Complex). Given a finite set V (called the set of vertices) and

K ⊆ P(V )\{∅}, we say that K is a simplicial complex if, for all σ ∈ K, we have that

∅ 6= τ ⊆ σ implies τ ∈ K.

We call the elements of K the faces of K, and define dimσ := #σ − 1 for all σ ∈ K.

Furthermore, we define the dimension of K to be the maximum dimension of its faces; i.e.

dimK := max{dimσ | σ ∈ K}

We write σ ≺ τ if σ ⊂ τ and dimσ = dim τ − 1.

From this definition, it should be clear that vertices are simply the 0-dimensional sin-

gleton elements of V while edges are the 1-dimensional sets connecting a pair of vertices.

It is worth noting that an arbitrary simplicial complex need not be finite — however, the

theorems and results of this thesis do not apply to such simplicial complexes and henceforth

we assume all of our simplicial complexes are finite.

Since much of what we compute in this thesis will be dependent on some dimension

0 ≤ p ≤ dimK (where K is our simplicial complex), we also wish to introduce the notion

of face sets:

Definition 1.2. If K is a simplicial complex and 0 ≤ p ≤ dimK, we refer to Kp as the set
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of all p-faces of K; that is:

Kp = {σ ∈ K | dimσ = p}

This will come into use later on, particularly when we want to find the most accurate

bounds on computational complexity.

Before addressing discrete Morse functions, it is useful to first describe the role of Morse

functions for smooth manifolds. In the smooth category, a Morse function is a smooth

function whose values represent the “height” of such a manifold. Consider, for example, the

function h(x, y, z) = z on the sphere S2. If we look at the sphere with the z-axis aligned

vertically, then h gives us the height of any point on the sphere.

For an arbitrary smooth manifold, we anticipate that a height function should assign

lower values to minima and higher values to maxima. The motivation for a discrete Morse

function is to relay similar information on a simplicial or CW-complex where such concepts

are less obvious. Specifically,

Definition 1.3 (Discrete Morse Function). Let K be a simplicial complex. A function

f : K → R is said to be a discrete Morse function if, for every 0 ≤ p ≤ dimK and β ∈ Kp,

f satisfies the following:

(a) #{β ≺ γ | γ ∈ Kp+1, f(β) ≥ f(γ)} ≤ 1

(b) #{α ≺ β | α ∈ Kp−1, f(β) ≤ f(α)} ≤ 1

In simpler terms, a discrete Morse function is a function in which any given face cannot

have more than one face with larger “height” value or more than one coface with smaller

“height” value. We will next see that these two conditions cannot occur simultaneously for

any given face α ∈ K.

Lemma 1.4. Given a simplicial complex K and discrete Morse function f : K → R, there

cannot be both a coface of smaller value and a face of higher value for any given simplex

β ∈ K.

Proof. The proof is by contradiction. Let dimβ = p, and assume to the contrary that there

exists a coface γ ∈ Kp+1 with f(γ) ≤ f(β) as well as a face α ∈ Kp−1 with f(α) ≥ f(β).
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By definition of a discrete Morse function, for any β′ ≺ γ with β′ 6= β, we cannot have

both f(γ) ≤ f(β) and f(γ) ≤ f(β′) so it must be the case that f(β′) < f(γ) and thus

f(β′) < f(β).

Now clearly K−1 = ∅ since a simplex is defined on P(A)\{∅}, so we must have that

p > 0. In fact, we may assume without loss of generality that p = 1 since higher dimen-

sional simplices are much finer in terms of edges and faces, and thus satisfy the following

assumptions to a fuller extent. The only assertion left to show is that there exists some

other β′ ≺ γ with α ≺ β′. Let α = {v1}, β = {v1, v2}, and lastly γ = {v1, v2, v3}. Then

we may clearly choose β′ = {v1, v3} to satisfy the requirements above (a similar construc-

tion may be used in higher dimensions, as it simply builds off the definition of a simplicial

complex).

By definition of a discrete Morse function, we cannot have both f(α) ≥ f(β) and

f(α) ≥ f(β′) so it must be the case that f(α) < f(β′) and thus f(β) < f(β′). However,

this is a contradiction since we proved f(β′) < f(β), so we must have that only one of the

two conditions hold.

One thing to take away from this lemma is that there is a rigorous bound on how

much a face may deviate from its neighboring faces or cofaces in terms of a discrete Morse

function. However, that says nothing about what happens when both sets in conditions (a)

and (b) in the definition above are empty. Intuitively this would mean that our function

increases along higher-dimensional cofaces and decreases along its lower-dimensional faces.

This gives us a natural analogy to gradient paths in the context of of smooth manifolds -

for this reason, we give the following definition according to [4]:

Definition 1.5 (Critical Face). Let K be a simplicial complex, let f : K → R be a discrete

Morse function, and let β ∈ Kp. We say β is a critical face if the following two conditions

hold:

(a) #{γ � β | γ ∈ Kp+1, f(β) ≥ f(γ)} = 0

(b) #{α ≺ β | α ∈ Kp−1, f(β) ≤ f(α)} = 0

To give a physical interpretation, [8] notes that critical faces of dimension p correspond
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to critical points of rank p for smooth Morse functions. In terms of [11], these are exactly

the p-handles of a smooth manifold.

Example 1.6. Consider a discrete Morse function h : K → R on a simplicial complex K

where K is the 1-skeleton of ∆3. We represent the values of h in Figure 1.1, where bold-

faced numbers correspond to edges. Note that all cofaces of h−1(0) have a greater value,

Figure 1.1: A discrete Morse function with a critical vertex h−1(0) and critical edge h−1(7)

thus making h−1(0) a critical vertex. Similarly, all faces of h−1(7) have a lesser value, thus

making h−1(7) a critical edge.

1.3 Hasse Diagrams and Discrete Vector Fields

At this point, there are numerous directions one could go in order to continue the basics

of discrete Morse theory. Some authors such as [10] pursue simplicial collapses (which

inevitably lead to homotopy equivalence), while others such as [5] pursue the discrete ana-

logues of level sets and the Morse inequalities. However, we will pursue the order of [8]

much more closely. At the beginning of this section, it may be unclear how some of the

concepts are related to discrete Morse theory — nonetheless, we will quickly relate several

of the concepts and show in the next section how they are applied to homology.

First and foremost, we will introduce the concept of a Hasse diagram in order to relay

as much information about a simplicial complex as possible in terms of one dimension.

Specifically:
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Definition 1.7 (Hasse Diagram). Let K be a simplicial complex. The Hasse diagram HK

of K is the directed graph whose vertices represent the faces (of any dimension) of K. If

α ≺ β then there is a directed edge in HK going from α to β.

Though the Hasse diagram may seem like an unnecessary abstraction, it is actually

essential when it comes to the theory of discrete vector fields. We give an example of a

Hasse diagram below:

Example 1.8. Consider the simplicial complex K given by the 2-skeleton of ∆3. There

are exactly four vertices, six edges, and four 2-faces (which we may simply refer to as

faces). Since ∆3 is a complete simplicial complex (i.e. no faces can be fit inside the existing

Figure 1.2: A visualization of ∆2 along with H∆2

vertices), the Hasse diagram HK is clearly much finer than the Hasse diagram HK′ for any

other simplicial complex K ′ with four vertices.

Now that we have established the definition of a Hasse diagram, we wish to give it some

structure in order to better find applications on discrete vector fields.

Definition 1.9 (Matching). Let G be a graph. A set of edges M⊂ G is called a matching

if every pair of edges is non-adjacent (that is, they do not share a common vertex). A

matching is said to be maximal if adding an edge not in M would make M no longer a

matching.
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We now turn our focus to discrete vector fields. In the smooth case, a vector field

indicates the direction that a point mass would tend towards when in a given position.

Since we are no longer talking about “position” as a continuum, but instead as a set of

states, we need to adjust our definitions.

Definition 1.10 (Discrete Vector Field). Let K be a simplicial complex. A discrete vector

field V on K is a collection of disjoint pairs {α ≺ β} (i.e. such that each σ ∈ K is in at

most one pair).

It may not be immediately clear how a discrete vector field has anything to do with the

previous two definitions. However, for each element in a discrete vector field V there must

exist faces σ and τ with σ ≺ τ and thus a directed edge in the Hasse diagram HK going

from the vertex representing σ to the vertex representing τ . In addition, since the pairs in

V are disjoint, it must be the case that the edges in HK corresponding to the pairs in V

are non-adjacent (as otherwise adjacent pairs would imply two faces share the same coface

or face). Therefore, we come upon the following lemma:

Lemma 1.11. Let K be a simplicial complex. There is a one-to-one correspondence between

discrete vector fields on K and matchings on HK ;

{V | V is a discrete vector field} ←→ {M ⊂ HK | M is a matching} .

The proof will be omitted since the previous paragraph summarizes the logic without

going into the full formality. From this point forward, we will let MV denote the repre-

sentation of a discrete vector field V as a matching in HK . When representing a discrete

vector field on a Hasse diagram through some matching MV , we reverse the orientation of

the edges in MV (this will allow us to extend the notions of paths on a simplicial complex

to paths on a Hasse diagram and vice versa).

In the case of vector fields on smooth manifolds, critical points represent positions where

a point mass is in equilibrium. We wish to somehow extend this notion to discrete vector

fields:

Definition 1.12. Let K be a simplicial complex and V be a discrete vector field on K. A
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face β ∈ K is said to be a critical face of V if there do not exist α ≺ β or γ � β such that

{α ≺ β} ∈ V or {γ � β} ∈ V .

In terms of our Hasse diagrams, this extends to the following notation:

Corollary 1.13. Let K be a simplicial complex and V a discrete vector field on K. A face

β is a critical face of V if and only if the vertex corresponding to β in HK , call it vβ, has

no adjacent edge in MV .

At this point, we have not added any structure specific to Morse theory — Hasse dia-

grams, matchings, and discrete vector fields all exist in the realm of graph theory. However,

it is worth noting that we have given competing definitions for what a critical face is — one

in the context of discrete Morse functions and one in the context of discrete vector fields.

Therefore, it is natural to introduce a bridge between the two subjects in order to reconcile

these competing definitions:

Definition 1.14 (Discrete Gradient Vector Field). Let K be a simplicial complex and

f : K → R a discrete Morse function on K. We define the discrete gradient vector field

−∇f of f on K as follows: for every β ∈ K, if there exists α ≺ β with f(α) ≥ f(β) then

{α ≺ β} ∈ −∇f .

As the reader may observe, β is a critical face of f if and only if β is a critical face

of −∇f . More importantly, the discrete gradient vector field allows either structure to be

used in place of the other. Consequently, this provides a means of endowing a simplicial

complex with a discrete dynamical system using only point-set data. Our next goal is to

identify an analogy for discrete gradient vector fields in the Hasse diagram.

Now that we have our discrete gradient vector field to bridge discrete vector fields and

discrete Morse functions, we are able to construct an analogue to cycles in the context of

discrete Morse functions. The following definition is adapted from [10]:

Definition 1.15 (Discrete Path). Let K be a simplicial complex and V a discrete vector

field on K. We say that a discrete path is a sequence

σ0 ≺ τ0 � σ1 ≺ · · · � σn−1 ≺ τn−1 � σn ≺ τn
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such that:

(i) {σi ≺ τi} ∈ V for all 0 ≤ i ≤ n.

(ii) σi 6= σi+1 for all 0 ≤ i < n.

(iii) τi 6= τi+1 for all i ≤ i < n.

Moreover, σ0 or τn may be omitted.

It is easy to see that a discrete path on a simplicial complex K induces a path on the

Hasse diagram HK :

Example 1.16. Consider the simplicial complex K given by the 2-skeleton of ∆3. Further-

more, suppose we have the discrete path

γ = v1 ≺ e3 � v3 ≺ e6 � v4 ≺ e5 � v2

on K. The path γ can be expressed in Figure 1.3:

Figure 1.3: A visualization of ∆3 along with H∆3

Note that we reverse the orientation of some arrows in the Hasse diagram to make the

orientation of the path more clear to the reader.

However, discrete paths do not yet fully incorporate the structure of discrete Morse

functions — simply discrete vector fields. The following Lemma is adapted from [10]:
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Lemma 1.17. Let K be a simplicial complex and f be a discrete Morse function on K. A

sequence

σ0 ≺ τ0 � σ1 ≺ · · · � σn−1 ≺ τn−1 � σn

is a discrete path for the gradient vector field −∇f if and only if

f(σ0) ≥ f(τ0) > f(σ1) ≥ · · · ≥ f(τn−1) > f(σn)

Proof. For the forward direction, we assume σ0 ≺ τ0 � σ1 ≺ · · · � σn−1 ≺ τn−1 � σn is a

discrete path. For each 0 ≤ i ≤ n we have {σi ≺ τi} ∈ −∇f so by definition f(σi) ≥ f(τi).

By definition of a discrete Morse function, τi cannot have more than one face with greater

f -value than it. In other words for 0 ≤ i < n, f(σi+1) ≥ f(τi) would be a contradiction

since τi � σi+1. Therefore, we must have f(τi) > f(σi+1).

For the reverse direction, suppose σ0 ≺ τ0 � σ1 ≺ · · · � σn−1 ≺ τn−1 � σn satisfies

f(σ0) ≥ f(τ0) > f(σ1) ≥ · · · ≥ f(τn−1) > f(σn).

For each 0 ≤ i ≤ n, we have that σi ≺ τi and f(σi) ≥ f(τi) so by definition {σi ≺ τi} ∈ −∇f .

In addition, we have that f(σi) > f(σi+1) for 0 ≤ i < n, so it must be the case that σi 6= σi+1

since f is well-defined. A similar argument shows that τi 6= τi+1 for 0 ≤ i < n. Therefore,

the sequence is a discrete path.

Definition 1.18. Let K be a simplicial complex and V a discrete vector field on K. We

call a discrete path

σ0 ≺ τ0 � σ1 ≺ · · · � σn−1 ≺ τn−1 � σn

a cycle if σ0 = σn. Furthermore, we say that K is acyclic if there does not exist a cycle on

K.

Note that this definition of an acyclic complex clearly extends to directed graphs since

we need only consider the Hasse diagram of our complex. We now consider the following

lemma, as posed by [10]:
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Lemma 1.19. A directed graph G is acyclic if and only if there exists a function f : Vert(G)→ R

that is strictly decreasing along each directed path.

The proof for the above lemma will be omitted since it goes outside the domain of this

thesis. One direction is fairly clear since a function that is strictly decreasing along each

path would lead to an inequality f(v) < f(v) if v is in some cycle. The interested reader

may refer to [2] to find a proof for why the converse holds.

Recall that when representing a discrete vector field V on a Hasse diagram HK through

some matching MV , we reverse the orientation of the edges in MV . However, when used

with Lemma 1.17, the Hasse diagram gives us a powerful redefinition of discrete gradient

vector fields.

Corollary 1.20. Let K be a simplicial complex and V be a discrete vector field on K. Then

V is a discrete gradient vector field of a Morse function f if and only if the Hasse diagram

HK with orientation modified by MV is a directed acyclic graph.

Proof. For the forward direction, suppose that V = −∇f for some discrete Morse function

f : K → R. Moreover, suppose to the contrary that there exists some cycle

σ0 ≺ τ0 � σ1 ≺ . . . τn � σ0.

By Lemma 1.17, this implies that

f(σ0) ≥ f(τ0) > f(σ1) ≥ · · · ≥ f(τn) > f(σ0),

a clear contradiction. Conversely, suppose that HK modified by MV is a directed acyclic

graph. By Lemma 1.19, we can find a function f : Vert(HK)→ R that is strictly decreasing

along each directed path. Note however, that if {α ≺ β} ∈ V , then the directed edge from

vβ to vα is flipped so that there is a path of length 1 from vα to vβ. By definition, f

must be decreasing along this path so f(vα) ≥ f(vβ). Suppose we define f∗ : K → R by

f∗(σ) := f(vσ) (where vσ represents the vertex corresponding to σ on HK). Then we have

{α ≺ β} ∈ V if and only if f∗(α) ≥ f∗(β), which is precisely the definition of −∇f∗.
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As we will see in the next chapter, a lack of cycles allows us to define an analogue of

Morse homology on a Hasse diagram whenever a Morse function is present.

1.4 Morse Homology

By this point, the reader should understand that discrete Morse functions give meaningful

insight to both the local structure and global structure of simplicial complexes. Since sim-

plicial complexes (and CW complexes) are often used in conjunction with smooth manifolds,

this allows us to observe many topological properties and dynamics of smooth manifolds.

However, one crucial property which has yet to be covered is the homology of a topological

space.

Since we are only discussing simplicial complexes in this paper, a trivial solution would be

to present simplicial homology; however, this would give us little carryover between discrete

Morse theory and homology. Furthermore, we will see that given the right discrete vector

field, Morse homology is far more efficient to compute than simplicial homology. There is

actually an enormous amount of theory building up the connection between discrete vector

fields, discrete gradient flows, boundary maps, and homology — much of this theory is

explained in [10, 4]. For the sake of brevity, this background will be skipped and we will

take an approach much closer to [5] (it is worth noting, however, that [10, 4] show how the

background theory implies the approach of [5]).

At this point, we will assume the reader has no familiarity with simplicial homology.

Thus, before establishing any equivalence classes on chain complexes, it is natural to first

define a chain on a simplicial complex:

Definition 1.21 (p-Chain). Let K be an oriented simplicial complex and 0 ≤ p ≤ dimK.

Assuming Kp = {σ1, . . . , σn}, we define a p-chain to be a linear combination

a1σ1 + · · ·+ anσn

where each ai ∈ Z.

This allows us to define a group structure on the set of chains over some simplex K

12



through usual addition. In particular, we expect that the group of p-chains should have

a basis Kp with induced orientation from K since each p-chain is a linear combination of

elements over Kp.

Definition 1.22 (Group of p-Chains). Let K be a simplicial complex and p ≥ 0 with p ∈ Z.

We define the group of p-chains, denoted Cp(K;Z), to be the free abelian group with the

binary operation of standard addition and basis Kp. Thus, elements of Cp(K;Z) are linear

combinations of elements in Kp with coefficients in Z.

We define C∗(K;Z) to be the graded structure

C∗(K;Z) =
dimK⊕
p=0

Cp(K;Z)

This is the point at which simplicial homology and Morse homology begin to diverge. If

we were to pursue simplicial homology, we would give a formal definition of the boundary of

a simplex in order to establish our boundary map for the chain complex C∗(K;Z). Our goal

is to still establish some sort of boundary map for a chain complex; however, our boundary

map will differ slightly from the boundary of a simplex and admit a much smaller group of

p-chains.

Definition 1.23 (Morse Group). Let K be a simplicial complex, let V be a discrete gradient

vector field on K, and let p ≥ 0 with p ∈ Z. We define the Morse group (of degree p), denoted

Mp ⊂ Cp(K;Z), to be the free abelian group with the binary operation of standard addition

and basis {σ ∈ Kp | σ is critical}. Thus, elements of Mp are linear combinations of critical

faces of degree p with coefficients in Z.

We define M∗ to be the graded structure

M∗ =
dimK⊕
p=0

Mp

If we define mp = #{σ ∈ Kp | σ is critical} (which is known as the Morse Number is

most literature) we have the following corollary:

Corollary 1.24. Let K be a simplicial complex and p ≥ 0 with p ∈ Z. Then we have that
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Mp '
⊕mp

n=1 Z.

Proof. SinceMp is defined to be the free abelian group with basis over {σ ∈ Kp | σ is critical},

there are exactly n = mp degrees of freedom. Since the coefficients in the linear combination

are integers, there is a clear canonical isomorphism given by

n∑
i=1

aiσi 7→ (a1, . . . , an)

The direct sum follows from linearity.

From now on, assume that K is an oriented simplicial complex. Let ∂̃p :Mp →Mp−1

denote the Morse-theoretical boundary map we wish to construct and ∂p : Cp(K;Z)→ Cp−1(K;Z)

denote the boundary map of simplicial homology. In particular, recall that we define a p-

face σ over a set of vertices V to be a subset of V of cardinality p+ 1. Thus, we define the

boundary of σ, denoted ∂p(σ), to be a linear combination of all subsets τ ⊂ σ of cardinality

p (i.e. τ ≺ σ). However, this linear combination must take the orientation of our simplex

into account. Suppose σ is the ordered set [v1, . . . , vp] and let τi = σ\{vi}. Then we may

formally define

∂p(σ) =

p∑
i=1

(−1)iτi.

It will soon become clear why we need ∂p in order to define ∂̃p - however, the fact that

∂̃p is only a map on Mp should be enough to convince the reader that the two are quite

distinct.

A second distinction between simplicial homology and Morse homology is that the ori-

entation of a simplicial complex K alone does not suffice for Morse homology. Given the

additional structure of a Morse function — which, in turn, gives rise to our discrete gradi-

ent vector field — we want to determine whether a particle moving initially in the positive

orientation will continue to move in the positive orientation as it travels along the gradient

vector field (i.e. a path requiring minimal energy). It should be relatively intuitive how this

allows us to distinguish the geometry of surfaces: given two isomorphic simplicial complexes

with differing Morse functions, if a particle moving along a fixed path switches orientations

on one complex and not the other, the induced geometries are clearly different.

14



We now attempt to formally define the concept in the above paragraph. Using the

notation of [10, 4], we define an inner product 〈 , 〉 on C∗(K;Z) by setting cells of the same

dimension to be orthonormal. However, suppose that σ ∈ Kp with σ ≺ τ and that σ and τ

have conflicting orientations. Then we set

〈∂p+1τ, σ〉 = −1.

That is, we define our inner product to account for orientation.

Using our inner product as described above, we define the multiplicity of a path γ

(denoted m(γ)) as the following:

m(γ) =


〈∂τ, σ〉 γ = σ ≺ τ or γ = τ � σ

〈∂τ, σn〉m(γ′) γ = γ′ · τ, σn ∈ Kp last face of γ′

〈∂τn, σ〉m(γ′) γ = γ′ · σ, τn ∈ Kp+1 last face of γ′

We use the symbol · above to denote concatenation of paths. For certain cases, we may

simply express m(γ) in an iterative expansion. For example, if we know the path γ begins

with a p-face and ends with a p-face, e.g.

γ = σ0 ≺ τ0 � σ1 ≺ · · · � σn

then we may collapse the recursive definition above to

m(γ) =
n−1∏
i=0

〈∂p+1τi, σi〉〈∂p+1τi, σi+1〉

However, this expansion is not well-defined unless the path γ is non-trivial, begins on a

p-face, and ends on a p-face.

Example 1.25. Consider the following simplex K and discrete vector field over K, as

adapted from [5].

Note that only relevant simplices are labeled and given an orientation. Consider the
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Figure 1.4: In the left diagram, the discrete vector field for K is given, whereas the right
diagram shows the orientation for relevant simplices

discrete gradient path given by

γ = σ0 ≺ τ0 � σ1 ≺ τ1 � σ2 ≺ τ2 � σ3

To simplify notation, let ∂ = ∂2. From our definition above, we have that

m(γ) =

n−1∏
i=0

〈∂2τi, σi〉〈∂2τi, σi+1〉

= 〈∂τ0, σ0〉〈∂τ0, σ1〉〈∂τ1, σ1〉〈∂τ1, σ2〉〈∂τ2, σ2〉〈∂τ2, σ3〉

= (1)(−1)(1)(−1)(1)(−1)

= −1

With the notion of accounting for orientation along a path via multiplicity, we are now

able to formally define our boundary map ∂̃p :Mp →Mp−1. We follow the notation of [5]

instead of [10] since the former provides a more intuitive explicit mapping.

Definition 1.26 (Morse Boundary Map). Let K be an oriented simplicial complex endowed

with some discrete gradient vector field. Let {τ1, . . . , τn} denote the basis for Mp (i.e. the

critical faces of dimension p). We define the Morse boundary map ∂̃p : Mp → Mp−1 on

the basis elements by

∂̃pτi =
∑

σ∈Kp−1

σ critical

cτi,σσ
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where

cτi,σ =
∑

γ∈Γ(τi,σ)

m(γ).

Here we denote the set of all paths from τi to σ as Γ(τi, σ). We extend ∂̃p from {τ1, . . . , τn}

to Mp by defining it to be Z-linear.

Note that ∂̃p(τ) is defined to be a linear combination of critical cells — therefore, it is

a well-defined map from Mp to Mp−1.

We now begin our construction of the Morse homology groups. In general, we use the

notation of [13]:

Definition 1.27 (Chain Complex). A chain complex C is a sequence

. . . −→ Cp+1
∂p+1−−−→ Cp

∂p−→ Cp−1 −→ . . .

of abelian groups Ci and homomorphishms ∂i, indexed by the integers, such that ∂i+1◦∂i = 0

for all i.

We now present the following theorem, which will allow us to proceed in our construction

of homology.

Theorem 1.28. The sequence {(Mi, ∂̃i) : i ∈ N} given by

...
∂̃i+1−−−→Mi

∂̃i−→Mi−1
∂̃i−1−−−→ . . .

∂̃1−→M0

is a chain complex.

A formal proof of the theorem above will be omitted since it requires several theorems

proving the behavior of a helper function Φ. However, linearity in Definition 1.27 follows

by definition of our Morse boundary map ∂̃ — thus, ∂̃i is a homomorphism. In particular,

M∗ is a Z-graded algebra with components corresponding to dimensions of critical cells.

Moreover, each Mp is a Zmp graded M∗-module (by Corollary 1.24).

To show that ∂̃p+1 ◦ ∂̃p = 0, we follow the approach of [4]. First, we convert our discrete

vector field V into a function V : C∗(K;Z)→ C∗(K;Z), defined by V (σ) = τ if {σ ≺ τ} ∈ V
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and V (σ) = 0 otherwise. Next, we define a map Φp : Cp(K,Z)→ Cp(K;Z) by:

Φp(σ) = σ + ∂pV (σ) + V (∂pσ)

for all σ ∈ Kp (where ∂p is the simplicial boundary map). This clearly extends to be linear

by linearity of the simplicial boundary map ∂p and V . If we let ΦN denote the composition

of Φ with itself N times, [4] proves the following two facts in Theorem 6.4(1) and Theorem

7.2, respectively:

Lemma 1.29. If ∂p is the simplicial boundary map, then Φ ◦ ∂p = ∂p ◦ Φ.

Lemma 1.30. For N large enough, ΦN = ΦN+1 = · · · = Φ∞.

Lemma 1.30 tells us that our map Φ∞ is equal to the composition of Φ with itself a finite

number of times. A direct corollary of Lemma 1.29 is that the finite composition of Φ with

itself commutes with ∂p — therefore, ∂p ◦Φ∞ = Φ∞ ◦∂p. If we let Φ̃∞ denote the restriction

of Φ∞ to the Morse group Mp, then from Theorem 8.2 in [4] we have

∂̃p = ∂p ◦ Φ̃∞ = Φ̃∞ ◦ ∂p

Therefore, we may directly compute

∂̃p ◦ ∂̃p+1 = Φ̃∞ ◦ ∂p ◦ ∂p+1 ◦ Φ̃∞ = Φ̃∞ ◦ 0 ◦ Φ̃∞ = 0

as desired.

The significance of the previous theorem is that it gives us the freedom to construct

homology groups in the canonical manner, just as one would do for simplicial or persistent

homology.

Definition 1.31 (Morse Homology). Let K be a simplicial complex endowed with a discrete

gradient vector field, and let

...
∂̃i+1−−−→Mi

∂̃i−→Mi−1
∂̃i−1−−−→ . . .

∂̃1−→M0
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be the Morse chain complex associated to K. For each i ∈ Z, we define the Morse homology

group H̃i(K;Z) by

H̃i(K;Z) = ker ∂̃i/Im ∂̃i+1

It is standard to let ∂̃0 be the zero map so that H̃0(K;Z) is well-defined.

For the reader who wishes to make this notion concrete, we provide the following exam-

ple:

Example 1.32. Consider the 2-dimensional simplicial complex K and discrete Morse func-

tion f : K → R given in the figures below. The second picture gives the orientation for the

relevant simplices, while the first picture provides the values for f . To simplify notation,

we let u = f−1(6), v = f−1(22), a = f−1(16), b = f−1(30), c = f−1(25), F1 = f−1(20),

F2 = f−1(19), and F3 = f−1(35). The reader can check that the critical vertices are exactly

those which are given some variable alias; that is,

M0 = {u,v}

M1 = {a,b, c}

M2 = {F1,F2,F3}

We may represent the discrete gradient vector field of f as below:

where a red arrow emanating from some face α with arrow ending in a face β denotes

{α ≺ β} ∈ −∇f .

In this example, we compute the second homology group of K denoted by H̃2(K;Z).
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First, we wish to find the values of ∂̃2. Since there are only three critical faces, we calculate

each explicitly. For F1 we have:

∂̃2(F1) = cF1,aa + cF1,bb + cF1,cc

Looking at the discrete gradient vector field, there is exactly one discrete gradient path going

from F1 to a, given by

γ = F1 � f−1(18) ≺ f−1(17) � a

Thus,

cF1,a = m(γ) = 〈∂F1, f
−1(18)〉〈∂f−1(17), f−1(18)〉〈∂f−1(17),a〉 = −1

(note that the orientation on the edge f−1(18) induced by F1 does not agree with the ori-

entation on f−1(18)). Finally, we note that there are no discrete paths going from F1 to b

or c, so cF1,b = cF1,c = 0. Thus,

∂̃2(F1) = −a

Next, we consider F2. Since a is a maximal face of F2, we get that the only path from

F2 to a is the trivial path F2 � a and thus cF2,a = 〈∂F2,a〉 = −1. Again, we can see that

there are no discrete paths from F2 to either b or c, so cF2,b = cF2,c = 0. Thus,

∂̃2(F2) = −a

Lastly, we consider F3. Both b and c are maximal faces of F3, so we must have

cF3,b = 〈∂F3,b〉 = 1 = 〈∂F3, c〉 = cF3,c
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However, there are no discrete paths from F3 to a and thus we are left with

∂̃2(F3) = b + c

In particular, since ∂̃2(F1) = ∂̃2(F2) = −a, we have that F1 − F2 ∈ ker ∂̃2. Since ∂̃3 ≡ 0,

we have that

H̃2(K;Z) = span{F1 − F2} ∼= Z

In particular, the reader should note that the simplex K is homotopy equivalent to the sphere

with a disk attached. Since the singular homology of a sphere with a disk attached is simply

the singular homology of a sphere by homotopy equivalence, the reader can check that

H̃1(K;Z) ∼= Hsing
1 (S2;Z) ∼= 0

and

H̃0(K;Z) ∼= Hsing
0 (S2;Z) ∼= Z

Though Morse homology is constructed in a different manner than simplicial homology,

much of the homological algebra remains the same. In fact, we provide the following fact

which will be referenced later in Chapter 3:

Proposition 1. Let K be a simplicial complex. If K is equipped with the discrete gradient

vector field V = ∅ (which can be given by f(σ) = dimσ), the Morse boundary map is simply

∂̃p = ∂p

where ∂p is the standard boundary of a simplex. Consequently,

H̃p(K;Z) = Hp(K;Z)

where Hi(K;Z) denotes the simplicial homology of K.

Proof. Since V = ∅, we must also have that our partial matchingMV on the Hasse diagram

is also empty, which implies that every σ ∈ K is critical. This implies that for every
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0 ≤ p ≤ dimK, Mp = Kp. If we fix some τ ∈ Kp, then the only paths emanating from τ

are the paths of length 1 going to maximal faces σ ≺ τ . Each path clearly has multiplicity

m(γ) = 〈∂pτ, σ〉, which gives us

∂̃p(τ) =
∑

σ∈Mp−1

cτ,σσ

=
∑
σ≺τ

cτ,σσ

=
∑
σ≺τ
〈∂pτ, σ〉σ

= ∂p(τ)

By definition, this implies

H̃p(K;Z) = ker ∂̃p/Im ∂̃p+1 = ker ∂p/Im ∂p+1 = Hp(K;Z)

Our last goal for this chapter is to give some exposition on the common theorems used

to compute homology by means of methods derived from the Fundamental Theorem of

Finitely Generated Abelian Groups.

To begin, we cite the following theorem, adapted from [13]:

Theorem 1.33 (The Fundamental Theorem of Finitely Generated Abelian Groups). Let

G be a finitely generated Abelian group. Then

G ' Zβi ⊕ (Z/t1Z⊕ · · · ⊕ Z/tmZ)

where βi > 0 and the ti > 1 satisfy ti|ti+1 for all 1 ≤ i ≤ m − 1. The cyclic groups Z/tiZ

are known as the torsion subgroups and the ti are known as the torsion coefficients.

From Definition 1.23 of the Morse group, we know that Mp is a free Abelian group for

all 0 ≤ p ≤ dimK (where K is our simplicial complex). We now consider a second theorem

adapted from [13]:
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Theorem 1.34. Let G and G′ be free Abelian groups with bases a1, . . . , an and b1, . . . , bm,

respectively. Suppose f : G→ G′ is a homomorphism with

f(aj) =
m∑
i=1

λijbi

Then there are bases for G and G′ such that, relative to the bases, M = {λij} has the form

M =

T 0

0 0

 , T =


t1 0

. . .

0 tr


where ti ≥ 1 and t1 | t2 | · · · | tr.

In the theorem above, the matrix M is said to be in Smith normal form (SNF). Moreover,

we know that the number r above is r = dim(f(G)) (where f(G) is the free Abelian group

under the image of our homomorphism f) since the dimension of M is invariant under linear

transformations. Lastly, by Theorem 11.5 in [13] all such ti > 1 are precisely the torsion

coefficients of the quotient group G′\f(G).

Since our Morse boundary map ∂̃p :Mp →Mp−1 is defined to be linear, the theorems

above apply quite naturally. As before, we consider some oriented simplicial complex K

and fixed dimension 0 ≤ p ≤ dimK. For simplicity, we assume 0 < p < dimK and allow

the reader to consider the edge cases of p = 0 and p = dimK. Let {µ1, . . . , µmp−1} be the

basis of the free groupMp−1, {σ1, . . . , σmp} be the basis ofMp, and {τ1, . . . , τmp−1} be the

basis of Mp−1. Then we have

∂̃p+1(τj) =

mp∑
i=1

aijσi

∂̃p(σj) =

mp−1∑
i=1

bijµi

so that we can find matrices Dp, Dp+1 with Dp+1 = {aij} and Dp = {bij}. However, by

Theorem 1.34 above, we need only consider the Smith normal forms of Dp+1 and Dp — call

them D′p+1 and D′p.
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Recall that we have

H̃p(K;Z) = ker ∂̃p/Im ∂̃p+1

Since ∂̃p+1 is a homomorphism, Munkres’ Theorem 11.5 tells us that the diagonal entries

(greater than 1) of D′p+1 are precisely the torsion coefficients of Mp/Im ∂̃p+1. Therefore,

the torsion coefficients of H̃p(K;Z) are the exact same entries of D′p+1.

To wrap up the chapter, we present a holistic way to represent our Morse homology

groups:

Definition 1.35. Let K be an oriented simplicial complex endowed with some discrete

gradient vector field V , and let p ≥ 0. We define the pth Betti number of K to be

βp = dimHp(K;Z) = dim(ker ∂̃p)− dim(Im ∂̃p+1)

By letting Dp and Dp+1 be the matrix representations of ∂̃p and ∂̃p+1 as above, it is

easy to see that

βp = dim ker(Dp)− rank(Dp+1) = (mp − rank(Dp))− rank(Dp+1)

Since the dimension and rank are invariant under linear transformations, we may simply

consider the nullity and rank of the Smith normal forms of our two matrices D′p and D′p+1,

respectively.

Corollary 1.36. Let K be an oriented simplicial complex endowed with some discrete gradi-

ent vector field V , and let p ≥ 0. If D′p and D′p+1 are the Smith normal form representations

of our boundary maps ∂̃p and ∂̃p+1 then

H̃p(K;Z) ' Zβp ⊕
⊕
i

Z/tiZ

where the ti are the diagonal entries of D′p+1 with ti > 1 and

βp = mp − rank(D′p)− rank(D′p+1)
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The reader should note that the formula above is not in any way specific to Morse

homology; the Fundamental Theorem of Finitely Generated Abelian Groups always allows

one to decompose a (non-trivial) homology group into its torsion elements along with some

Zk (assuming Z is the coefficient group). In fact, the last bit of information specific to

Morse theory was given in the definition of the Morse boundary map ∂̃p from Definition

1.15. We will see in later chapters that the Morse boundary map provides a more arduous

means of computing homology on a simplex, though also allows the potential for one to

consider far fewer vertices (given the right discrete vector field).
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Chapter 2

Turing Satisfiability

2.1 Preliminaries

With the basics of discrete Morse theory and homology covered, an important question to

ask is whether it is always feasible to compute the homology of a given simplicial complex

K endowed with a discrete Morse function f : K → R. If not, it would be meaningless to

attempt finding the computational complexity of such an algorithm. In fact, the Church-

Turing thesis [3] states that if there exists a simplicial complex with discrete Morse function

such that the homology is incomputable, then no algorithm exists to compute the homol-

ogy. Therefore, the focus of this chapter will be to first lay out the basic information of

computability theory (from the perspective of Turing machines) and then proceed to apply

concepts covered in sections 1.3 and 1.4. All notation and basic information are adapted

from [15].

2.2 Turing Machines and Formal Languages

Though Turing completeness is often used as a characterization of whether a task is feasible

by a computer or formal language, the underlying theory of Turing machines is actually

a purely mathematical construct. In essence, a Turing machine is simply a finite state

machine with memory. Moreover, a finite state machine is simply a directed graph (not

necessarily acyclic) with inputs and outputs corresponding to the transition from one state
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to another along an edge, a distinguished starting vertex, and a subset of vertices for which

the “machine” is allowed to halt.

However, before defining what a Turing machine truly is, one must make rigorous what

is meant by “inputs” and “outputs” for a given machine.

Definition 2.1 (Language). Let A be an alphabet (a finite set with at least two elements).

We define the graded structure A∗ as

A∗ =

∞⊕
k=0

Ak

where Ak denotes the Cartesian product of A exactly k times (and A0 = {ε} where ε is the

empty string). An element s ∈ A∗ is called a string over the alphabet A, and is said to have

length p if s ∈ Ap.

We endow A∗ with a monoid structure as follows: let s = (s1, . . . , sm) ∈ Am and

t = (t1, . . . , tn) ∈ An. Then the binary operation

s · t = (s1, . . . , sm, t1, . . . , tn)

known as concatenation makes A∗ a monoid with identity ε. A language L is any subset of

A∗ (not necessarily a submonoid as ε ∈ L is not always true).

Thus, not much structure is required in order to define an arbitrary language. For that

reason, most classes of languages are defined from a combinatorial perspective as opposed

to an algebraic perspective. In particular, the class of languages that we care most about is

decidable languages — that is, languages whose strings are accepted by a Turing machine.

Definition 2.2 (Turing Machine). A Turing machine M is a six-tuple (Γ, β,Q, δ, s, h) with

Γ - the tape alphabet

β - the blank symbol with β /∈ Γ

Q - the set of states (or vertices)
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δ - the next-state function δ : Q× (Γ∪ {β})→ (Q∪ {h})× (Γ∪ {β} ∪ {L, R}) such that if

M is in state q with a under the tape-head and δ(q, a) = (q′,C), then M enters state

q′ and either writes C if C ∈ Γ ∪ {β}, moves the tape-head left if C = L, or moves

the tape-head right if C = R

s - the starting state

h - the distinguished halting state h /∈ Q.

Given a string ω ∈ Γ∗, we say that M accepts ω if when started in state s with some string

ω′ placed left-adjusted on its (otherwise blank) tape and the tape-head at the leftmost cell,

the last state entered by M is h and the resulting string on the tape is ω. We define the

language L(M) over Γ as

L(M) = {ω ∈ Γ∗ |M accepts ω}

Moreover, we say that a language L is decidable if there exists some Turing machine M ′

such that L = L(M ′).

This brings us to one of the first questions which this thesis seeks to answer: how does

one produce a Turing machine that recognizes the homology groups Hi(K;Z) of a given

simplicial complex K?

Like the vast majority of mathematical theorems, one must build up the machinery

to tackle such a problem. Indeed, constructing such a Turing machine explicitly would

be onerous and its relation to homology would not be immediately obvious. Therefore, the

next few lemmas and definitions will allow the use of more flexible approaches when proving

the feasibility of an arbitrary task.

Lemma 2.3. Let M1 and M2 be Turing machines over the the alphabets Γ1 and Γ2 respec-

tively. Let L1 = L(M1) and L2 = L(M2). Then there exists a Turing machine M over the

alphabet Γ1 ∪ Γ2 that decides the language L1 · L2.

Proof. Let M1 = (Γ1, β1, Q1, δ1, s1, h1) and M2 = (Γ2, β2, Q2, δ2, s2, h2). Without loss of

generality we may assume β1 = β2 and take β = β1 = β2. We construct our new Turing
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machine M with states Q = Q1 ∪ Q2 such that Q1 and Q2 are glued together at h1 = s2

(let this state be called q so that π1(q) = h1 and π2(q) = s2 where π1 : Q → Q1 and

π2 : Q→ Q2 are the projection maps). Furthermore, construct a transition function δ such

that δ|Q1\{q} ≡ δ1 and δ|Q2 ≡ δ2 — in particular, if there exists some input a ∈ Γ2 such

that δ2(s2, a) = (q′,C) with q′ ∈ Q2, we set δ(q, a) = (q′,C). Lastly, we add an additional

state f which we will call the “fail” state. If we are in a state q′ 6= q which corresponds

to a non-halting state in M1 and we encounter a character from our second alphabet Γ2,

we enter state f . Similarly, if we are in a state q′′ 6= q which corresponds to a non-starting

state of M2 and encounter a character from the first alphabet Γ1, we wish to enter state f .

If we enter the fail state, we wish to remain in the fail state — thus we set δ(f, a) = (f,L).

This ensures that δ is well-defined on Γ1 ∪ Γ2. We set our starting state as s = s1 and

halting state as h = h2. Let M = (Γ1 ∪ Γ2, β,Q, s, h).

Fix some ω1 ∈ L1 and ω2 ∈ L2. For the forward direction, we wish to show that

ω1 · ω2 ∈ L(M). Since ω1 ∈ L1, M1 halts at the end of the string ω1. Thus, ω2 starts at

state q = π−1
1 (h1) = π−1

2 (s2). Since δ|Q2 ≡ δ2 and M2 halts on input ω2, we have that M

halts on input ω1 · ω2.

Conversely, suppose that ω ∈ L(M). By definition, M halts on input ω and thus

ultimately winds up in state h = h2. By construction, our Turing machine must pass

through q to transition from Q1 to Q2. Thus, there exists some input a ∈ Γ2 such that

δ(q, a) = (q′,C) with q′ ∈ Q2 — without loss of generality we may assume a is the first

input which takes M into Q2. Then we can partition our input ω as

ω = (ω1, . . . , ωn, a, . . . , ωm)

= (ω1, . . . , ωn) · (a, . . . , ωm)

= ω1 · ω2

for some m > n. Thus, M enters state q = π1(h1) (from some other non-halting state) on

input ωn. By construction of our halting state f , we have that M would enter f if any

character of ω1 were in Γ2 — therefore, ω1 ∈ Γ∗1. Therefore, we must have that M1 accepts

ω1 so ω1 ∈ L1. Similarly, by selection of a, ω2 takes M from q = π−1
2 (s2) to h = h2. By
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the same logic, ω2 must only contain characters of Γ2 so M2 halts on input ω2 and thus

ω2 ∈ L2. Therefore, M decides L1 · L2.

Figure 2.1: Representation of Turing machine concatenation. Dotted arrows represent
projection while solid arrows represent next-state function

Corollary 2.4. The finite concatenation of decidable languages is decidable.

Though the above corollary may seem trivial, it is a key component in proving that

certain iterative algorithms are indeed computable by a Turing machine. For example, if a

certain algorithm T1 is computable via a Turing machine, then any finite loop that executes

T1 in its body is also computable by a (likely different) Turing machine. Based on the

previous chapter, the reader should note that the computation of the Morse boundary map

is heavily dependent on iteration-based computations (primarily through finite summation).

Therefore, if we are able to prove that each component in a finite summation is computable

via a Turing machine, then the summation is computable as well.

We next turn our attention to a construct known as the multi-tape Turing machine.

Since Turing machines are (in the simplest of terms) finite state machines with memory,

we wish to simplify how to keep track of memory. Indeed, the restrictions on how a Turing

machine iterates over its tape make it difficult to separate uncorrelated information. For

example, if we wanted to examine all strings over the alphabet A = {a, b} and accept those

strings with exactly one more a than b, it would be much more intuitive to simply separate

the a’s and b’s onto two separate tracks.

30



Definition 2.5 (Multi-Tape Turing Machine). A k-tape Turing machine M is a (k + 5)-

tuple (Γ1, . . . ,Γk, β,Q, δ, s, h) with Γi being the tape alphabet for the ith tape, and next-state

function δ of the form

δ(q, a1, . . . , ak) = (q′, a′1, . . . , a
′
k)

with q, q′ ∈ Q, and each ai, a
′
i ∈ Γi. Our β,Q, s, and h are as before.

As we will see in the next theorem (as adapted from [15]), every computation feasible

with a multi-tape Turing machine is also feasible with the standard Turing machine. This

result will allow us to assume henceforth that the Turing machines we use can separate

their data into finitely many tracks.

Theorem 2.6. Let Mk be a multi-tape Turing machine with exactly k ∈ N tracks. Then

there exists a single-tape Turing machine M such that L(Mk) ∼= L(M) (that is, each string

in L(Mk) has a corresponding string ω′ in L(M) such that Mk halts on ω if and only if M

halts on ω).

Proof. Suppose there is a distinct alphabet for each track on our k-tape turing machine, Γi

for 1 ≤ i ≤ k. For each i, we construct a second alphabet Γ̃i such that each a ∈ Γi is in

one-to-one correspondence with some ã ∈ Γ̃i (this second alphabet will allow us to collapse

k tape-heads into one tape head). Furthermore, since each alphabet is finite we may find

some symbol, call it #, that is not in Γi for any i (this will serve to distinguish the k tapes

when positioned adjacently). Take Γ = {#} ∪
⋃k
i=1(Γi ∪ Γ̃i). Suppose Mk recognizes some

ω1, . . . , ωk such that each ωi is placed on the ith tape. Then we can form the string ω ∈ Γ∗

as follows:

ω = # · ω1 ·# · ω2 · · · ·# · ωk ·#

Thus, each string on each track is padded by our unique symbol #. Now suppose our

multi-tape Turing machine Mk performs the following state-transition when in state q:

δk(q, a1, . . . , ak) = (p,C1, . . . ,Ck)

That is, our machine MK transitions to state p and, for each 1 ≤ i ≤ k, the ith tape-head

31



is over the letter ai ∈ ωi and performs Ci (that is if Ci = bi ∈ Γi ∪ {β} then bi is written

onto the ith tape — otherwise the ith tape-head moves either left or right). We modify ω

in the following way: if the ith tape head is over ai ∈ ωi ⊂ ω, we replace that letter in ω

with ãi. We construct our next-state function on M by considering the following two cases

for each 1 ≤ i ≤ k:

Case 1 : (Ci = bi ∈ Γi ∪ {β}). Then Mk writes bi in place of ai on the ith track. Thus, we

set δ(q, ãi) = (q′, b̃i). Note that the alternative alphabet for Γi is preserved since the

tape-head does not move. If i = k then we set q′ = p — otherwise we keep q′ = q.

Thus, we do not actually transition to the next state until all k stages are complete.

Case 2 : (Ci ∈ {L,R}). Then Mk moves the ith tape-head left or right. Suppose bi is the

letter to the direct left or right of ai. Then we perform 3 transitions for M :

δ(q, ãi) = (q, ai)

δ(q, ai) = (q,Ci)

δ(q, bi) = (q′, b̃i)

Thus, we unmark ai as being under the tape head, move over to bi and mark bi as

being under the tape-head. Again, if i = k then we set q′ = p — otherwise we keep

q′ = q.

We can assume without loss of generality that βi = β for all i — there need not be any

distinction on how a blank character is interpreted. Furthermore, the set of states is not

altered by our above algorithm. Therefore, if Mk recognizes {ω1, . . . , ωk} we have that M

recognizes ω. Without loss of generality, we can assume {ω1, . . . , ωk} is already in the form

of ω so it follows that L(Mk) ⊂ L(M).

To see that L(M) ⊂ L(Mk), we may simply partition ω at the # markers. Since M and

Mk have the same states, it follows by construction that Mk halts on ω if and only if M

halts on ω.
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Figure 2.2: Representation of how a word recognized by a 3-tape Turing machine is trans-
lated to a word recognized by the corresponding single-tape Turing machine.

2.3 Decidability of Morse Homology

We now have the machinery to compute the main results of this thesis. The decidability

of Morse homology alone is a straightforward algorithm which follows from its definition

— the difficulty is the extensive prerequisite material required. In particular, we seek to

fully utilize the correlation between Hasse diagrams and discrete Morse theory in order to

fit graph-theoretical approaches into our algorithm.

Recall from Chapter 1 that we extended the notion of a discrete vector field V on

a simplex to the Hasse diagram by associating a matching MV with the directed edges

reversed. Moreover, our critical points are precisely the vertices of our Hasse diagram

HK such that no adjacent edge is an element of MV . If we visualize our Hasse diagram

with the vertices corresponding to lowest dimension simplices at the bottom and vertices

corresponding to top dimensional simplices at the top, we are able to redefine our sets Kp

to be the “level sets” of our Hasse diagram HK . We seek to make this idea rigorous:

Definition 2.7 (Level sets of HK). Let K be a simplicial complex and HK be its corre-

sponding Hasse diagram. Define V ⊂ HK to be the set of vertices in HK which correspond

to vertices in K. We refer to V as the set of root elements or leaves of HK . For any vertex
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v ∈ HK , we define the depth of v to be

dep(v) := min
v′∈V

γ∈Γ(v,v′)

len(γ)

That is, the depth of a vertex is the length of the shortest path to a root element. For

0 ≤ p ≤ dimK, we redefine the level set Kp to be a level set on HK .

Clearly, we have that K0 = V since the singleton path is the shortest path from any

root element to itself. It is not hard to see that the two representations of Kp correspond

to the same elements:

Lemma 2.8. Let K be a simplicial complex and HK be its corresponding Hasse diagram.

Let Kp ⊂ K denote the set of p-faces and K ′p denote the level set of HK as defined above.

Then K ′p is the image of Kp in the Hasse diagram.

Proof. Fix some 0 ≤ p ≤ dimK and σp ∈ Kp. By definition of a simplex, σp is a set of p+1

vertices so

σp = {v1, . . . , vp+1}.

For any vi we can find a decreasing chain of sets by removing vj for j 6= i at each step.

Without loss of generality, we may assume this sequence is

σp = {v1, . . . , vp+1} ⊂ · · · ⊂ {v1, v2, v3} ⊂ {v1, v2} ⊂ {v1}

since our enumeration of the vertices does not affect the length of our chain. Let each set

of i+ 1 elements be denoted σi. Then we have the chain

σ0 ≺ σ1 ≺ · · · ≺ σp.

If we let V denote the set of root elements of HK , then σ0 = {v1} corresponds to a root

element of V . Moreover, if we let vσi denote the vertex in HK corresponding to σi, then

vσp . . . vσ0 is a shortest path to a root element in HK . Thus, vσp ∈ K ′p.

The converse argument is identical and therefore omitted.
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Though the level sets are likely not going to be used, Corollary 1.13 gives us a simple

way to define the Morse groups over the Hasse diagram.

Definition 2.9 (Morse Basis over HK). Let K be a simplicial complex and V a discrete

vector field over K. Then for 0 ≤ p ≤ dimK, we define the Morse basis of degree p to be

BMp = {vσ | every adjacent edge of vσ is in HK\MV }

We now turn our attention to proving whether certain constructs given so far are com-

putable with a Turing machine.

Lemma 2.10. The construction of the modified Hasse diagram is decidable for any simpli-

cial complex K and discrete vector field V on K. That is, there is a Turing machine which

recognizes an encoding of HK with edges flipped along MV for any simplicial complex K

and discrete vector field V .

Proof. We may construct an enumeration for any simplicial complex K such that if α ≺ β

then the index of α is strictly less than the index of β. Thus, we consider the alphabet

K∗ ∪ {≺, ; } where K∗ = {σ1, σ2, . . . }. We may thus represent any simplicial complex K

as a string over the alphabet K∗ ∪ {≺, ; }. Let k = ε initially denote the empty string.

Starting with the vertices (lowest-dimensional faces), if σi is a vertex and σi ≺ σj , then we

concatenate σi ≺ σj ; to k. We apply the same rule to edges once all vertices have been

exhausted. Following this pattern, we get a string k with all relations σi ≺ σj separated by

; and increasing along the length of k in terms of dimension.

For any K, we consider the alphabet VK∗∪ṼK∗∪{←,→, ; } where VK∗ = {vσi | σi ∈ K∗}

and

ṼK = {ṽσi | vσi ∈ VK}

The latter set will allow us to distinguish critical faces. Recall that for any V , the discrete

vector field is already of the form {{αi ≺ βi} | 1 ≤ i ≤ m} for some m ∈ N — thus, we can

always find a subset v of k which gives an encoding of V . We construct a 3-tape Turing

machine, call it MHK
, to recognize the Hasse diagram HK with edges flipped alongMV for

arbitrary K and V .
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On the first tape, we put our string representation of K which we denote as k. On the

next tape, we put the string hk = ε (which is initially empty), and on the third tape we put

the substring v of k corresponding to V .

We start in state s with the tape-head positioned along the leftmost cell in each tape.

Iterating over the third tape, if σ1 = αi for some 1 ≤ i ≤ m we enter some state q1. In

q1 we concatenate vσ1 → to hk on the second tape and replace any occurrence of ṽσ1 with

vσ1 . We then move over two on the first tape to read the face σj (such that σ1 ≺ σj) and

write vσj ; on the second tape. We then enter some state r, in which we rewind the third

tape-head to the leftmost position and go back to state s.

If σ1 6= αi for all 1 ≤ i ≤ m, then we will encounter a β on the third tape. Upon input β

on the third tape, we enter a different state q2. In q2 we write ← instead of → and replace

every occurrence of vσ1 with ṽσ1 . We continue in this fashion until the blank symbol β is

encountered on the first tape, at which point we have visited every cell of the first tape and

iterated over the third tape approximately |K| times. Since an arrow ← is flipped to → if

and only if the face is in the discrete vector field, our string hk on the second tape gives an

encoding for HK .

Moreover, since we proceed in order of increasing dimension along k, we are able to

consistently correct whether σn is represented as vσn or ṽσn on hk until all adjacent edges

have been considered. The setMV is explicitly the concatenation of all substrings of hk in

the form vσn → vσm ; and the critical faces are explicitly those σ marked by a ṽσ.

By Theorem 2.6 above, MHK
can be recognized by a single-tape Turing machine, say

M ′HK
, which therefore must also recognize the Hasse diagram of a given simplicial complex

with edges flipped on MV .

Corollary 2.11. The computation of the level set Kp is decidable for any simplicial complex

K and 0 ≤ p ≤ dimK.

Proof. We proceed over the alphabet VΓ ∪ ṼΓ ∪ {←,→, (, ), ; , 0, ∗}. By Lemma 2.10 above,

there is a Turing machine MHK
which recognizes a string hk representing our Hasse diagram

in the form

hk = vσ1 ← vσj ; vσ2 → ṽσk ; . . .
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(up to direction of arrows and placement of markers).

We now construct a second, two-tape Turing machine MKp that recognizes our level set

Kp. By Lemma 2.3, the concatenation of Turing machines is again a Turing machine —

thus, we may assume without loss of generality that MKp already recognizes an encoding

of HK . Suppose our encoding hk of HK is placed leftmost on the first tape. In the starting

state s we insert the string () before every ←, →, and ;. Thus, MKp ’s first tape is now of

the form

h′k = vσ1()← vσj (); vσ2()→ ṽσk(); . . .

MKp then enters some state q0. In state q0 we replace vσj () with vσj (0) if σj is a vertex

of K (that is, there exists no τ with vτ → vσj or vτ ← vσj ). We then enter some state q2.

We construct the next-state function on δ in an iterative fashion: initially, we replace each

vσ(0)→ vτ () (resp. vσ(0)← vτ ()) with vσ(0)→ vτ (∗) (resp. vσ(0)← vτ (∗)).

Assume that on the ith pass of q2 we replace vσj () with vσj (∗ ∗ · · · ∗) (i.e. the string

containing only ∗ of length i) if and only if vσj has depth i. Then on the i+1th pass we replace

every vσj (∗ ∗ · · · ∗)← vσk() (resp. vσj (∗ ∗ · · · ∗)→ vσk()) with vσj (∗ ∗ · · · ∗)← vσk(∗ ∗ · · · ∗ ∗)

(resp. vσj (∗ ∗ · · · ∗) → vσk(∗ ∗ · · · ∗ ∗)) in a fashion such that markers ṽ are preserved. For

the sake of notation, we may replace the string ∗∗ · · · ∗ of length i with the number i. Since

the vertices are increasing along h′k by depth (by Lemma 2.10 above), we need only modify

h′k after vσk(i+ 1). Thus, for each vσk(i+ 1) ∈ Ki+1, we reiterate over h′k and replace any

instances of vσk(∗)← (resp. vσk(∗)→) with vσk(i+ 1)← (resp. vσk(i+ 1)→) in a fashion

such that markers ṽ are preserved. Note that this will take exactly |Kp| passes over h′k. By

construction, Kp is precisely the substring of h′k in the form

vσk(p)← vσj (p+ 1); . . . ; vσn(p)→ ṽσm(p+ 1);

up to direction of arrows and placement of markers.

Thus, MKp enters a final state q3 in which the first tape-head is placed leftmost along

the tape. We then iterate over h′k one last time. If vσ(p) (resp. ṽσ(p)) is under the first

tape-head, then we write vσ (resp. ṽσ;) on the second tape. If we encounter the blank
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symbol β in q3, we enter our halting state h.

By Theorem 2.6 above we can find a single-tape Turing machine M ′Kp
that recognizes

the same language as MKp . By Lemma 2.3 above, the concatenation of M ′HK
and M ′Kp

is again a Turing machine that recognizes an encoding of the level sets Kp on the Hasse

diagram HK .

The reader should note that this proof is closely related to how the depth of a node is

computed recursively, as often taught in elementary computer science courses. In particular,

a set of roots are established to have depth 0 by construction. Then, the depth of an

arbitrary node is defined to be one more than the minimum depth of its neighbors. For

example, evaluating the depth of a tree can be simply computed as follows:

Algorithm 1: Depth

input : Tree T, Node node

output: Depth of node

begin

if node in T.Root then

return 0;

else

return 1 + min(Depth(i) for i in node.children);

end

end

As was the case in Chapter 1, the level sets of our Hasse diagram are of little use in pursuing

Morse homology. However, the previous two proofs give us much flexibility in computing

the Morse groups Mp on the Hasse diagram. This brings us to the first of several central

results for this thesis:

Theorem 2.12. The computation of the Morse basis BMp is decidable for any simplicial

complex K, discrete vector field V on K and 0 ≤ p ≤ dimK.
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Proof. By Lemma 2.10 above, we are able to construct a Turing machine MHK
which

computes an encoding hk of our Hasse diagram HK . By Corollary 2.11 above, we are able

to construct a second Turing machine MKp which constructs an encoding of Kp — call it

kp — on its second tape whenever hk is placed on its first tape. Continuing in this fashion,

we construct a third two-tape Turing machine MMp which recognizes an encoding of BMp

when kp is placed on its first tape. Recall that the critical cells of Kp are represented in

the encoding kp as vertices vσ which are marked as ṽσ. Thus, we need only pass over the

first tape in one iteration: if an unmarked vertex vσ; is under the first tape-head then

we move to the right, otherwise we write ṽσ; onto the second tape-head and move to the

right. Again utilizing Theorem 2.6 and Lemma 2.3 above, we simply construct a single-tape

Turing machine M ′Mp
that recognizes the same language as MMp and concatenate that to

the Turing machines M ′HK
and M ′Kp

.

The theorem above gives us a strong foundation for the two remaining theorems of this

chapter. Clearly, we would not be able to show that the construction of our boundary map

∂̃p : Mp → Mp−1 is decidable if we did not know that the basis BMp is itself decidable.

Since we know that ∂̃p is linear, it simply suffices to compute ∂̃p for all basis elements.

We will continue to make heavy use of the multi-tape Turing machine since orientation

comes into consideration for the boundary map. Before we proceed with any other proofs,

it is worth giving a brief outline on how we anticipate the boundary map computation to go.

Adopting the notation from the proofs above, we write vσ ← vτ when σ ≺ τ and {σ ≺ τ}

is not in the discrete vector field. On the other hand, we write vσ → vτ when σ ≺ τ and

{σ ≺ τ} is in the discrete vector field (since directional arrows are flipped along MV ). In

either case, the vertex representing a face of larger dimension is always on the right.

Instead of tackling the entire computation of ∂̃p, we wish to show that certain sub-

components of our calculation are computable via a Turing machine — the first of such

components is given by Algorithm 2 below. We must assume henceforth that our discrete

vector field is a discrete gradient vector field of some Morse function. By Corollary 1.20 from

Chapter 1, this will assure us that our Hasse diagram is in fact acyclic. The lack of cycles

will prevent our recursive algorithm below from running into an endless loop. As one can
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clearly tell from the structure, we are searching for two cases (which cannot simultaneously

occur since the Hasse diagram does not have edges between equi-dimensional faces):

Case 1: The last face of our current path µ is a (p − 1)-face. In order to continue our path,

we need some σ′ such that µ ≺ σ′ and µ ≺ σ′ is in the discrete vector field. But then

we must have that vµ → vσ′ .

Case 2: The last face of our current path µ is a p-face. Since our path alternates between

dimension p and (p− 1) we are clearly looking next for some σ′ ∈ Kp−1. Then either

vσ′ ← vµ or vσ′ → vµ. In the latter case, if vσ′ → vµ then {σ′ ≺ µ} is in the

discrete vector field. But by definition of a discrete Morse function we cannot have

some second {σ′ ≺ µ′} in the discrete vector field, so our path ends at σ′. But σ′ is

not critical so it does not affect the overall calculation of ∂̃p(τ). Thus, we need only

consider vσ′ ← vµ.
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Algorithm 2: AppendPaths

input : Path γσ, Set of paths Γ

begin

µ := last face of γσ;

if dimµ = p− 1 then

for σ′ ∈ Kp with vµ → vσ′ do

γσ′ = γσ ∪ {σ′};

Append γσ′ to Γ;

AppendPaths(γσ′);

end

else

for σ′ ∈ Kp−1 with vσ′ ← vµ do

γσ′ = γσ ∪ {σ′};

Append γσ′ to Γ;

AppendPaths(γσ′);

end

end

end

As mentioned, if the Hasse diagram is acyclic then the function will eventually exhaust

itself and Γ will contain all paths emanating from a maximal face of τ . Hence, the only

remaining task is to select the relevant paths and sum up m(γ) appropriately.
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Algorithm 3: EvaluatePaths

input : Set of paths Γ

begin

CriticalSums := { (σ, 0) for σ in BMp−1 } ;

for γ in Γ do

µ := last face of γ;

L = len(γ);

Prod := 1;

if µ inMp−1 then

for i in 0 . . . L− 1 do

Prod = Prod * Orient(τi, σi+1);

end

CriticalSums[µ] = CriticalSums[µ] + Prod

end

end

end

In Algorithm 3 above, we simply iterate over all the paths that we found in Algorithm

2. Since Algorithm 2 collects paths regardless of whether they land on a critical simplex,

we must check in our loop that the last face of a path is in fact a critical face in BMp . If

so, we proceed in the traditional manner of finding m(γ). Each critical face is assigned its

own sum, as given above by the array CriticalSums. Thus, if a given path ends on some

critical cell µ then we add m(µ) to that particular sum.

The next goal is to prove that the algorithms above can be computed by a Turing

machine. We in fact start with the most difficult algorithm to compute — Algorithm 2.

Lemma 2.13. There exists a Turing machine which recognizes the set of all gradient paths

emanating from a fixed face for any simplicial complex K and gradient vector field V = −∇f

on K.

Proof. We may assume without loss of generality that K is connected (and thus the Hasse
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diagram HK is connected as well). Fix some face σ ∈ K and let vσ be the associated

vertex on the Hasse diagram HK . Let K∗ denote the set of all faces of K. We wish

to construct a 3-tape Turing machine MΓ that will recognize all discrete gradient paths

emanating from σ. Our first and second tape will contain strings over the alphabet K∗∪K∗,

where K∗ = {σ | σ ∈ K∗} allows us to mark the last element of a path (since the ṽσ is

already used to mark critical faces).

Initially, the singleton σ is placed on the second tape under the second tape-head, since

it is by definition the last element of a singleton path. We let γ denote the path under the

second tape-head at any given moment (initially γ = {σ}).

Lastly, by Corollary 2.11 we are able to construct a Turing machine MHK
which con-

structs an encoding

h′k = vσ1(0)← vσj (1); vσ2(0)→ ṽσk(1); . . .

of our Hasse diagram with dimensions considered. Without loss of generality, we may as-

sume that the tape alphabet on the third tape is precisely all combinations of vσ(k)← vτ (k+1)

(resp. vσ(k) → vτ (k + 1)) in a manner that preserves markers ṽσ. Thus, we are able to

write the string h′k onto the third tape such that ; represents splitting of cells. We require

4 states: s, q1, q2, h.

In state s, we copy γ onto the first tape. The first tape-head then iterates over γ to the

last face, call it µ. The third tape-head then iterates to find a character of the form

vµ(p− 1)← vτ (p), vµ(p− 1)→ vσ′(p), vσ′(p− 1)← vµ(p), vσ′(p− 1)→ vµ(p),

which must exist since the Hasse diagram is connected. In the last two cases, we enter state

q1.

In state q1, we again iterate over the third tape looking specifically for a character of

the form vµ(p− 1) → vσ′(p) for some σ′ ∈ K∗. If we find such an element under the third

tape-head, we write the path σ . . . µσ′ at the end of the second tape (note how we move the

marker to the new last element). Once the blank character β is encountered on the third

tape, we move the second tape-head left until the character µ is encountered. Recall, this
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represents the last face of the path we just extended. We then move the second tape-head

right one. If any such σ′ were found in the previous step, then there would be a new path

under the tape-head — thus, we set γ to be the new path under the tape-head and return

to state s. Otherwise, we were unable to extend our path any further and there is a blank

symbol β under the tape-head — in this case, we enter our halting state h.

In the case that we find the latter two symbols, we enter state q2. In state q2, we iterate

over the third tape looking for a character of the form vσ′(p− 1)← vµ(p) for some σ′ ∈ K∗

as above. If we find such an element, we do the exact same as in state q1.

Since V = −∇f is assumed to be a discrete gradient vector field, there are no cycles in

the Hasse diagram by Corollary 1.20. If

γ0 = σ ≺ µ0 � µ1 ≺ µ2 . . .

is a discrete gradient path, then there will be elements of the form

vσ(p− 1)→ vµ0(p) ; vµ1(p− 1)← vµ0(p) ; vµ1(p− 1)→ vµ2(p) ; . . .

on the third tape. Thus,

σ, σµ0, σµ0µ1, σµ0µ1µ2, . . .

will all eventually be written onto the second tape. Therefore, the second tape of Mγ

recognizes an encoding of all discrete gradient paths emanating from σ, call it Γ. By

Theorem 2.6 we can find a single-tape Turing machine M ′Γ which recognizes the encoding

for Γ.

The reader should note that the second tape of MΓ in the proof above is specifically used

in a queue-like fashion; this is no coincidence, as a FIFO (first-in-first-out) data structure

is commonly used for depth-first search. Thus, our algorithm can be broken down into

recursively applying depth-first search until all nodes have been visited.

This brings us to the first example of this chapter:

Example 2.14. Let K be the 1-skeleton of the tetrahedron ∆3 (that is, ∆3 with all 2-faces
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and the 3-face removed). Furthermore, let V be the following discrete gradient vector field,

as pictured in blue in Figure 2.3:

V = {{v0 ≺ e2}, {v1 ≺ e1}, {v2 ≺ e5}}

Figure 2.3: Skeleton of ∆3 endowed with gradient vector field, along with Hasse diagram

It may be useful to the reader to note that adding the pair {v3 ≺ e4} to V would induce

a cycle in the Hasse diagram HK and, thus, no longer make V a discrete gradient vector

field.

Following from Corollary 2.11, we are able to construct an encoding for HK along with

the depth of each node as follows:

h′k = vv0(0)← ve0(1); vv0(0)→ ve2(1); vv0(0)← ve3(1); vv1(0)← ve0(1); . . .

Choose τ = e0. From Figure 2.3 we can see that e0 has two maximal faces: v0 and v1.

It is easy to see from HK that there are only two distinct longest paths emanating from a

45



maximal face of τ :

v0 ≺ e2 � v2 ≺ e5 � v3

v1 ≺ e1 � v2 ≺ e5 � v3

For this particular example, we choose σ = v0 to be the maximal face of τ of interest.

Following the proof of Lemma 2.13 above, we build a Turing machine MΓ with the encoding

h′k on the third tape, the singleton maximal face σ on the second tape, and the first tape

empty, as shown in Figure 2.4.

Figure 2.4: Turing machine MΓ at initial stage

We then iterate over the third tape to find an element of the form

vσ(0)← vτ (1), vσ(0)→ vσ′(1), vσ′(0)← vσ(1), vσ′(0)→ vσ(1)
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Since σ = v0 and τ = e0, the first element on our third tape satisfies the first criterion so

we enter state q1. In state q1, we again iterate over the third tape in search for a character

of the form vσ(0) → vσ′(1) for some σ′ ∈ K1. Luckily, the second element on the third

tape satisfies this condition, and thus we add v0e2 to the end of the second tape. However,

one can see from HK that there is no other element of the form vv0(0) → vej (1) for any

0 ≤ j ≤ 5. Thus, we encounter a blank sybmol β and move the second tape-head to the

right of v0 on the second tape. This, however, represents the beginning of our new path

γ = v0e2.

Figure 2.5: Turing machine MΓ after returning to state s for first time

Again in state s, the first tape iterates over γ to find the last face µ = e2. The third tape-

head then iterates over the third tape to find an element resembling one of the following:

ve2(0)← vτ (1), ve2(0)→ vσ′(1), vσ′(0)← ve2(1), vσ′(0)→ ve2(1).
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Since the second element of our third tape satisfies the fourth criterion above, we enter

state q2. As described in Lemma 2.13, while in state q2 we reiterate over the third tape

to look for an element specifically of the form vσ′(0) ← ve2(1) for some σ′ ∈ K0. As one

can observe from HK , the only choice of σ′ is v2. Hence, we write v0e2v2 to the end of the

second tape and continue searching for some vσ′(0) ← ve2(1). Since there is no other σ′

satisfying vσ′(0)← ve2(1), we hit a blank symbol β and return to state s.

We continue in this fashion until our second tape has

v0v0e2v0e2v2v0e2v2e5v0e2v2e5v3

On our last iteration, when γ = v0e2v2e5v3 is placed on the first tape, we enter state q1 to

try to find an element of the form vv3(0)→ vσ′(1). As one can tell from HK , no such string

occurs on the third tape and thus we encounter a blank symbol β without putting anything

on the tape. We then go back to state s, go to our marked vertex v3 and move the second

tape-head right one. However, since we did not append any lists in our last step the second

tape-head reads a blank symbol β — thus, we enter our halting state. The reader can check

that the second tape contains all possible discrete gradient paths emanating from σ = v0.

Before we can prove that the computation of ∂̃p(τ) is decidable, it remains to show that

Algorithm 4 is decidable.

Lemma 2.15. There exists a Turing machine which computes

∑
σ∈BMp−1

σ
∑

γ∈Γ(τ,σ)

m(γ)

for any simplicial complex K and discrete gradient vector field V = −∇f with τ ∈ Kp (for

1 ≤ p ≤ dimK).

Proof. Let K be a simplicial complex and V = −∇f be a discrete gradient vector field on

K. Fix some 1 ≤ p ≤ dimK and τ ∈ Kp. In order to keep track of our sums, we first

wish to find an upper bound on the number of paths emanating from τ (since each m(γ)

is at most 1). Let kp = |Kp|. From a given p-face, there are exactly
(
p+1
p

)
maximal faces

(by definition of a simplex). However, there can only be one edge in MV emanating from
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a (p− 1)-face σ since MV contains non-adjacent edges. Suppose that edge goes to some τ ′

with σ ≺ τ ′ (and {σ ≺ τ ′} ∈ V by construction). Since returning to σ would induce a cycle

and there are no cycles on discrete gradient vector fields, there must be at most kp−1 − 1

faces to return to. Continuing in this fashion, we have that the number of discrete paths

emanating from σ is bounded by

M =

(
p+ 1

p

)
(kp − 1)!

We wish to construct a Turing machine MΣ which will recognize the sum of all multiplicities

of paths emanating from τ and terminating at a critical (p− 1)-face.

Since M above is finite, we let Mp ∪ {−M, . . . , 0, . . . ,M} be the alphabet for the third

tape. Suppose Mp = {α1, . . . , αmp}. Then our third tape will initially contain the string

α10α20 . . . αmp0

By Lemma 2.13 above, we are able to construct a Turing machine MΓ which produces

a string Γ of all paths emanating from τ with the last face of each path marked by µ.

Originally, this is over the alphabet K∗ ∪K∗ where K∗ denotes the set of all faces of K.

We add the sets (K∗)+ ∪ (K∗)+ and (K∗)− ∪ (K∗)− in order to account for positive and

negative orientation. Initially, we let the first and second tapes of our Turing machine MΣ

be Γ.

We need 8 states for our Turing machine MΣ: s, s′, h,Σ+,Σ−, r, q1, q2. In the starting

state s, the second tape-head iterates over its tape marking each σ with either σ+ or σ−

depending on its orientation. Once a blank symbol β is encountered, we enter state s′ and

the second tape-head returns to the left-most position.

In state s′, if there is a blank symbol under the first and second tape-heads, we enter

state h and halt. Otherwise, we look at the cell under the first tape-head. If it is a critical

cell (that is, µ is marked by a µ̃), we enter state q1. Otherwise we enter state r.

Whenever MΓ enters state r, we know that the first and second tape-head are over

the same element, which is the last face µ of some path γ. In state r, we move the first
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tape-head to the right until it finds the next occurrence of a last face µ′ of the next path γ′,

and move the second tape-head right by one (so that it is at the first element of γ′). Thus,

r allows us to iterate over both copies of Γ in a manner such that we traverse one path at

a time. After moving the second tape-head right one, MΣ transitions from state r to state

s′ again.

Our state q1 represents an overall positive product for m(γ) whereas state q2 represents

an overall negative product for m(γ). Thus in state q1, if the first and second tape-heads

are not in the same position (i.e. we have not traversed our entire path yet) and a face of

the form σ+ is under the second tape-head, we remain in state q1. Otherwise, a face of the

form σ− is under the second tape-head and we enter state q2. State q2 is almost identical in

that we remain in state q2 if we read σ+ and transition back to q1 if we read σ−. Lastly, if

the first and second tape-heads are in the same position (meaning we have iterated over a

full path) we either transition from state q1 or q2 to Σ+ or Σ− (depending on the orientation

of our last element µ).

If our machine is in Σ+, we read the cell µ under the first tape-head (which we know is

critical since we initially entered state q1) and increment the cell directly to the right of µ

on the third tape by 1. Similarly, if we are in Σ−, we reduce such a cell by −1.

Clearly MΣ must halt since the first and second tape-heads only move rightwards after

state s and, therefore, must eventually encounter a blank symbol β on both tapes. Moreover,

since the multiplicity of every path in Γ is accounted for (as we do not jump indices on the

second tape after state s), we must have that our third tape is of the form

α1

∑
γ∈Γ(σ,α1)

m(γ) . . . αmp

∑
γ∈Γ(σ,αmp )

m(γ)

Since each m(γ) is either 1 or −1, we have that
∑

γ∈Γ(σ,αi)
m(γ) ∈ {−M, . . . , 0, . . . ,M}. As

in previous proofs, it follows from Theorem 2.6 and Lemma 2.3 that we are able to construct

a single-tape Turing machine M ′Σ which recognizes

∑
ν∈BMp−1

ν
∑

γ∈Γ(σ,ν)

m(γ)
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The reader should note that the mechanism in MΣ above which recognizes m(γ) for any

given path (i.e. states q1 and q2) is really just the finite-state machine which computes the

binary exclusive-OR function (also known as XOR). This is due to the fact that multiplying

by 1 or −1 is the same as adding by 0 or 1 over Z2, respectively.

We are now ready for the second central result of this thesis:

Theorem 2.16. There is a Turing machine which recognizes the Morse boundary map ∂̃p

for any simplicial complex K, discrete gradient vector field V = −∇f and 0 ≤ p ≤ dimK.

Proof. By Theorem 2.12, we are able to construct Turing machines MMp and MMp−1 which

recognize BMp = {α1, . . . , αmp} and BMp−1 = {β1, . . . , βmp−1}. Fix some 1 ≤ i ≤ mp. By

Corollary 2.11, we are able to also construct a Turing machine MKp which devises an

encoding

h′k = vσ(0)← vτ (1); . . .

for our Hasse diagram HK .

By Lemma 2.13, we are able to construct a Turing machine MΓi which computes all

discrete gradient paths emanating from αi. By Lemma 2.15 above, we are further able to

construct a Turing machine MΣi which recognizes the sum

∑
βi∈BMp−1

βi
∑

γ∈Γ(τ,βi)

m(γ)

However, this is precisely ∂̃(αi). By allowing 1 ≤ i ≤ mp to vary, we come up with mp Turing

machines which collectively recognize ∂̃p. By Corollary 2.4, the finite concatenation of such

Turing machines is again a Turing machine. By Theorem 2.6, we are able to construct a

single-tape Turing machine which recognizes an encoding of ∂̃p.

The reader should note that by no means is a Turing machine ever the most efficient

method of computation — this is evident in the proof above by the large bound M on

the incidence number along a path. As previously stated, Turing machines simply offer an

answer to which computations are always feasible versus which computations may never
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halt. It will later be the goal of Chapter 3 to identify an asymptotic upper bound for Morse

homology.

Returing to the question of whether Morse homology is always computationally feasible,

Theorem 2.16 above gives us all the machinery needed to provide a rigorous answer. Recall

from Corollary 1.36 in order to find our homology groups H̃i(K;Z) it suffices to find the

matrices Dp+1 and Dp representing our boundary maps and compute their Smith normal

forms.

Fortunately, an algorithm which computes the Smith normal form of an integer matrix

was proved to be P-complete in [9]. Clearly our matrix representation of ∂̃p is an integer

matrix since the multiplicity of a path µ is only defined over the integers. This brings us

to the last theorem of this chapter.

Theorem 2.17. There exists a Turing machine which recognizes

H̃i(K;Z)

for any simplicial complex K (endowed with a discrete gradient vector field V ) and 0 ≤ i ≤ dimK.

Proof. By Theorem 2.16 above, there is a Turing machine M∂ which recognizes the bound-

ary maps ∂̃p and ∂̃p+1. We may assume without loss of generality that they are already

represented in a linearized matrix form — that is, an index 0 ≤ n ≤ mpmp−1 on the tape

of M∂ would correspond to an element [Dp](i,j) in the matrix representation Dp of ∂̃p with

i = bn/mp−1c and j = n mod mp−1.

From [9] we know that there exists a Turing machine that runs in polynomial time (with

respect to length of input) that recognizes the Smith normal forms D′p and D′p+1 of Dp and

Dp+1 respectively (where Dp and Dp+1 are the matrix representations of ∂̃p and ∂̃p+1).

Moreover, by Theorem 11.5 in [13] we know that the torsion elements of H̃i are precisely

the diagonal elements of D′p+1 which are greater than 1. However, since all other entries of

D′p+1 are 0 by definition of Smith normal form, it follows that we need only find the entries

of D′p+1 which are not 0 or 1 — this is clearly feasible in linear time with a Turing machine.

To find the Betti number βi of H̃i(K;Z), we construct a Turing machine Mβ which iterates

over the columns of D′p+1 (we would technically need some kind of marker σ̃ to distinguish
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the first element of a column since we only know the product of the number of rows and

number of columns) - since our matrix Dp+1 has dimesnsion mp+1×mp, this would give us

precisely mp. Since D′p+1 is of the form

M ′ =

T 0

0 0

 , T =


t1 0

. . .

0 tr


we know that rank(D′p+1) is simply the number of torsion coefficients, which we already

know. Thus, we would merely have to iterate over D′p once to count the number of non-zero

columns in D′p, ultimately giving us

βi = mp − rank(D′p)− rank(D′p+1)

Since our homology group H̃i(K,Z) can be completely described in terms of the Betti

number and torsion coefficients, we are done.

53



Chapter 3

Computational Complexity of

Morse Homology

3.1 Preliminaries

In the previous chapter we focused on the question of whether certain tasks relating to Morse

homology are always computationally feasible. Knowing that this is the case (by Theorem

2.17), a natural follow up question is to ask how much work is required to compute such a

task. More specifically, if we know that our computation takes T steps on an input of size

N , we wish to know how many steps our computation takes on inputs of sizes 2N, 3N, 4N,

etc. Such questions are part of a much larger field of study known as asymptotic analysis

and computational complexity — in this chapter, however, we will restrict our focus to the

asymptotic analysis of Morse homology.

Since the Morse boundary map is generally much more tedious to compute than the

simplicial boundary map for a fixed simplex, one would hope that Morse homology has

the benefit of computational speed-up in most cases; otherwise, there would never be any

reason to compute Morse homology instead of simplicial homology. From our background

in Chapter 1, an easy way to optimize Morse homology is to make the groups Mp much

smaller than Kp — in particular, we seek discrete Morse functions which minimize our

critical cells. Therefore, we hope to identify a class of simplicial complexes which minimize
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critical cells and thus admit a computational speedup for Morse homology.

3.2 Limit Behavior

In the fields of mathematics and computer science, it is not always necessary to find explicit

formulae for the complexity of a function, but rather to find the most accurate bounds for

such a function. For example, if we are given some unknown function g(x) and we know

that eventually (that is, for sufficiently large x) our function satisfies f(x) ≤ g(x) ≤ h(x) for

two other well-known functions f(x) and h(x), then we can make inferences on the behavior

of g at infinity based on the well-known behavior of f and h at infinity. This brings us to

the primary concept of this chapter:

Definition 3.1 (Big-O). Let f : R → R be a real-valued function and g : R → [0,∞) a

non-negative function. We write f(x) = O(g(x)) if there exists some M > 0 and x0 such

that

|f(x)| ≤Mg(x)

for all x ≥ x0.

In the vast majority of cases, we need only concern ourselves with a select group of

functions g(x):

O(1), O(xk), O(2x), O(log x), O(xk log x), O(x!)

where k ∈ N. Indeed, given a polynomial

p(x) = akx
k + . . . a1x+ a0

with k > 0, we know that for x > 1 we have xk > xk−1 > · · · > x > 1. Thus, for x > 1

p(x) < |ak|xk + |ak−1|xk + . . . |a1|xk + a0x
k = xk

k∑
i=0

|ai|

so that p(x) = O(xk). Hence, we are often allowed to predict the behavior of polynomials

55



by looking at their leading coefficients.

A significant drawback of Big-O notation is that upper bounds are not unique for our

target function f(x). For example, suppose we have some function f(x) with f(x) = O(1).

Then there exist some M ≥ 0 and x0 such that |f(x)| ≤ M for x ≥ x0. But then we must

also have

|f(x)| ≤Mx ≤Mx2 ≤ · · · ≤Mxk ≤ . . .

for x ≥ max{x0, 1}. Thus, if a function is O(1) then it is also O(xn) for all n ∈ N regardless

of whether it looks anything like xn at infinity. Therefore, the objective of asymptotic

analysis is to make our bounding function g(x) inside O(g(x)) as small as possible.

Though there are numerous other concepts in asymptotic analysis such as big-Omega

notation, big-Theta notation, and little-o notation, we will solely focus on the concept of

big-O notations in the remaining theorems regarding Morse homology.

3.3 Asymptotic Analysis of Morse Homology

As done in previous sections, we approach the problem of Morse homology by considering

the primary components of its algorithm. In Chapter 2, we constructed Algorithms 2 and 3

to help find a Turing machine which would recognize our Morse homology. As it turns out,

both of these algorithms are relatively crude in terms of their computational complexity —

Algorithm 2 in particular gives an exponential estimation for what is at most a polynomial

time computation.

The reader should note that the lion’s share of work in computing the complexity of

Morse homology is to find an accurate bound on the complexity of computing

cτ,σ =
∑

γ∈Γ(τ,σ)

m(γ)

To begin, we wish to find an upper bound on the number of discrete paths emanating from

a critical face τ . As before, let K be some simplicial complex endowed with a discrete
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gradient vector field V . For each 0 ≤ p ≤ dimK, we let V (p) denote the set

V (p) = {{σ ≺ τ} ∈ V | dim τ = p}

Thus, when computing ∂̃p(τ) we restrict our attention solely to paths that travel from τ to

a critical (p− 1)-face using only the vectors in V (p) and no other vector in V . As one might

expect, we use MV (p) to denote the partial matching on the Hasse diagram restricted to

V (p). Lastly, we use H(p)
K to denote the sub-graph of the Hasse diagram restricted to p and

(p − 1) faces. We henceforth refer to the graph G = H(p)
K with edges flipped along MV (p)

as the pth section of the modified Hasse diagram.

Theorem 3.2. Let K be a simplicial complex and −∇f be a discrete gradient vector field.

Fix some 0 ≤ p ≤ dimK and let G = (E, V ) = H(p)
K be the pth section of the modified Hasse

diagram. Then we can compute a matrix representation of ∂̃p in O(mp(|V |+ |E|)) time.

Proof. To begin, we first wish to reduce the problem to finding the sum of multiplicities

of paths between a critical p-simplex τ ∈ Mp and critical (p − 1)-simplex σ ∈ Mp−1. Let

cτ : V → Z denote the sum of multiplicities of paths from τ to a vertex v ∈ V . Now clearly

we have that cτ (τ) = 1. Suppose u is a (p− 1)-simplex and the only co-faces of u are some

a and b. Then any path going to u must also go through a or b. However, both cτ (a) and

cτ (b) are just sums of multiplicities

cτ (a) = m(γa,1) +m(γa,2) + · · ·+m(γa,n)

cτ (b) = m(γb1) +m(γb2) + · · ·+m(γb,m)

suppose we let γau,i denote our extension of the path γa,i to u. Then it follows that

m(γau,i) = 〈∂a, u〉m(γa,i)

by our definition of multiplicity. Since each path which reaches u must go through a or b,

it follows that cτ (u) = 〈∂a, u〉cτ (a) + 〈∂b, u〉cτ (b). Generalizing this concept, we come up
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with the recursive formula

cτ (u) =


1 u = τ∑

(v,u)∈E〈∂v, u〉cτ (v) dim(u) = p− 1

〈∂u, v〉cτ (v) {v ≺ u} ∈ (−∇f)(p)

where the last case follows from the fact that there’s at most one vector in the discrete

vector field emanating from a (p − 1)-simplex (however, the last case does not affect the

complexity). If we approach this in a manner similar to modified depth-first search, then

we may cache (i.e. store) the results as we proceed along the graph. Thus, we evaluate each

edge and vertex at most once by the time we compute all of cτ , giving us a complexity of

O(|V |+ |E|). Since our results are cached, accessing the cτ (σ) takes at most constant time,

and thus the computation

∂̃p(τ) =
∑

σ∈Mp−1

cτ (σ)σ

is O(|E|+ |V |+mp−1) — however, we clearly have |V | > mp−1 so this bound reduces back

to O(|E| + |V |). Lastly, our cached information does not apply for other p-faces τ ′ so we

must again compute cτ ′ using the methodology above for all τ ′ ∈ Mp. Since we follow the

notation of [10] by using mp to denote the number of critical p-cells, this gives an overall

bound of computing ∂̃p in O(mp(|E|+ |V |)) time.

Again, the reader should note the similarity of this algorithm to a modified depth-first

search. It is often the case that recursive formulae computed over graphs can be dynamically

sped up by storing each calculation in case it is used later.

The above calculation may be slightly modified since we know that we are dealing with

simplicial complexes. Recall that a p-simplex σ is simply a set of p + 1 vertices with the

property that any subset of those vertices is again a face of σ. Thus, a (p− 1)-dimensional

face of σ is simply a choice of p vertices out of our original p + 1 vertices. It follows that

the number of (p − 1)-faces of a given p simplex is exactly
(
p+1
p

)
. Thus, the total number

of edges on the pth section of the Hasse diagram H(p)
K is really |E| =

(
p+1
p

)
|Kp|. Since
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|V | = |Kp|+ |Kp−1|, we have that

O(mp(|V |+ |E|)) = O(mp(|Kp|+ |Kp−1|))

on our simplicial complexes K.

All that is left in order to compute the Morse homology of a simplicial complex K is to

find the complexity of computing the Smith normal form of a matrix. In numerical analysis,

authors often distinguish between sparse matrices and dense matrices (the former is simply

a matrix with the majority of entries equal to 0 and the latter is a matrix that is not sparse)

when considering the complexity of linear systems. That said, computing the complexity of

Smith normal form is no different — we would expect that far fewer operations are required

if we know many of the matrix entries are 0.

One difficulty of providing an accurate bound on the complexity of matrix reduction al-

gorithms is that the true lower bound on fast matrix multiplication is not currently known.

We chose to follow the notation of [17] in constructing a variable θ such that two n × n

matrices over a commutative ring can be multiplied in O(nθ) time. As [17] states, standard

matrix multiplication has θ = 3 whereas Strassen’s divide-and-conquer algorithm [18] ad-

mits θ = log2 7. Special cases arise over finite fields in papers such as [16] which prove that

the number of gates needed has order θ = 2. For the case of dense Smith normal form, we

now provide the following lemma as proven by [17]:

Lemma 3.3. Let A ∈ Zn×m. Then the Smith normal form UAV of A can be recovered in

O(nmrθ−1 log(nm) log ‖A‖+ nmr log(nm)B(log ‖A‖))

operations, where

B(k) = O(k(log k)2(log log k))

r = rank(A), U ∈ Zn×n is unimodular and V ∈ Zm×m.

The need for terms such as B(k) above is due to the fact that Storjohann frequently

accommodates for bounds on integer bit-wise representations in our matrix. For example, in
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[17] he states that a 1000×1000 matrix of integers with entries restricted to two decimals may

lead to intermediate results with entries up to 3500 decimals. Thus, theB(k) serves to bound

the bit-wise representation of entries in terms of ‖A‖. In general, one can see that the leading

term of the equation above is quite similar to that of Gaussian elimination’s complexity.

Indeed, Smith normal form can be thought of as the generalization of Gaussian elimination

over groups, and thus many of the standard row elimination methods are used or slightly

adapted (since inversion is no longer well-defined). Many of the remaining logarithmic

terms, as mentioned above, arise due to the representation of our matrices.

For the remainder of this chapter, we will refer to the poly-logarithmic term inside the

bound above as Sdense(A) for an integer matrix A. Since all other terms (i.e. n,m and r)

are defined in terms of A, Sdense(A) gives a well-defined bound on the number of operations

to recover the Smith normal form of a dense integer matrix.

For sparse matrices, the complexity of computing the Smith normal form of an integer

matrix A ∈ Zn×m has been proven to be

O(n2m log ‖A‖+ n3 log2 ‖A‖)

by Giesbrecht in [6]. The proof of this bound will be omitted since it requires a significant

amount of prerequisite material not covered in this thesis. We will simply refer to this

polynomial as Ssparse for the remainder of the chapter.

Ultimately, the reader should note that both computations take the number of rows

and columns into account when evaluating the Smith normal form. Now if we compare

Morse homology to singular homology, it is worth noting that the matrix representation of

our simplicial boundary map ∂p takes the form of a |Kp| × |Kp−1| integer matrix, while the

matrix representation of ∂̃p takes the form of an mp×mp−1 integer matrix. In particular, the

matrix representation of our simplicial boundary map ∂p is a matrix whose entries are either

1 or −1. Moreover, that matrix is sparse whenever |Kp| > 2
(
p+1
p

)
for all 0 ≤ p ≤ dimK

(since, for a fixed τ ∈ Kp, there will be more σ ∈ Kp−1 faces with a zero coefficient in the

sum ∂p(τ) than with coefficient of 1 or −1).

It should be evident to the reader at this point that, for a given simplicial complex K,
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the computation of Morse homology on K is far more efficient than the simplicial homology

on K whenever mp � |Kp|. Since the critical faces of a discrete gradient vector field V

correspond to the unmatched vertices in HK\MV , one wishes to find a maximal matching

M′ on HK that does not induce any cycles. This problem of finding a maximal acyclic

matching M′ is a well-known problem in the field of algebraic combinatorics, commonly

referred to as the Maximal Morse Matching Problem (MMMP). In 2006, the Maximal Morse

Matching Problem was shown to be NP-hard by Joswig and Pfetsch [8] in the following

context:

Definition 3.4 (NP-hard). Let L be a decision problem (that is, a representation of a

formal language). We say that L is NP-hard if, for every H in NP, there exists a polynomial

reduction of H to L.

One immediate takeaway of a maximal matchingM′ is that the number of paths going

into any p face will likely be large. For example, when V = 0 there is at most one path going

from a fixed (p+1)-face to a fixed p-face. However, as one begins to add more pairs {α ≺ β}

to V , we can see that it is now possible for numerous paths to go from a fixed (p+ 1)-face

to a fixed p-face. Therefore, there is no guarantee that our matrix representing ∂̃p+1 will be

sparse, so we assume without loss of generality that it is dense. Conversely, we may assume

that our simplicial complex K is sufficiently large so that the matrix representation of ∂p+1

is sparse.

Now if we take k = max{|Kp−1|, |Kp|} and m = max{mp−1,mp}, we have that

Sdense(D̃p+1) ∼ O(m4 logm)

Ssparse(Dp+1) ∼ O(k3 log k)

This indicates that the computation of simplicial homology will asymptotically outgrow

the computation of Morse homology for the class of simplicial complexes which satisfy

m = O(k3/4). Since we have that the number of critical cells on K is equal to r if and only

if the matching M on HK is of size

|M| = |K| − r
2
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we define the class of Morse-ideal simplicial complexes as follows:

Definition 3.5 (Morse-Ideal). We say that a simplicial complex K is Morse-ideal if there

exists a matching M on HK with

|M| ≥ |K| − |K|
3/4

2

We define the class MI to be the set of all Morse-ideal simplicial complexes.

It follows that a Morse-ideal simplicial complex K is a simplicial complex with a discrete

Morse function that has at most |K|3/4 critical faces. For a fixed simplicial complex, we

clearly have that |K| is fixed — thus, its does not make sense to say that the complexity of

computing H̃p(K;Z) is any better than the complexity of computing Hsimp
p (K;Z). However,

we are interested in how close the class MI is to the overall class of simplicial complexes.

In fact, if we introduce the notion of barycentric subdivision, we have that every sim-

plicial complex K is homotopy equivalent to a simplicial complex K ′ in MI . This leads us

to the following definition:

Definition 3.6 (Barycentric Subdivision). Let K be a simplicial complex. For each simplex

∆n ⊂ K with vertices v1, . . . , vn+1, we define the barycenter b∆n of ∆n to be the point

1

n+ 1
(v1 + · · ·+ vn+1)

We define the simplicial complex B(K) to be the largest simplicial complex with the property

that for every strictly increasing sequence σ0 ⊂ · · · ⊂ σk of simplices in K, there is a

simplex ∆̃k ∈ B(K) with vertices bσ0 , . . . , bσk . The simplicial complex B(K) is known as

the barycentric subdivision of K.

Example 3.7. Let Bi(K) denote the iteration of the operator B exactly i times on the

simplicial complex K. If we consider our simplicial complex to simply be the 2-simplex ∆2,

we have the following barycentric decompositions:

In general, homotopy theory is extensive and requires background in topology (which

will not be covered by this thesis). For the interested reader, an in-depth proof of the
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Figure 3.1: Original simplex ∆2 Figure 3.2: B(∆2)

Figure 3.3: B2(∆2) Figure 3.4: B3(∆2)

Figure 3.5: B4(∆2) Figure 3.6: B5(∆2)

following lemma can be found in Proposition 2.21 in Allen Hatcher’s Algebraic Topology [7].

Lemma 3.8. If one extends the barycentric subdivision operator B linearly so that it is a

morphism of chains B : C∗(K;Z) → C∗(K;Z) for every simplicial complex K, then B is

chain homotopic to the identity map.

A direct consequence of the lemma above is that for any N ∈ N and simplicial complex

K, we can find a simplicial complex K ′ with at least N faces (of any dimension less then or

equal to dimK) that has the same topological properties as K. From our previous chapters,

we know that Morse homology is a topological invariant — therefore, one may consider how

the barycentric subdivision affects our Morse-theoretic properties (i.e. discrete gradient

vector field, critical cells, etc). Fortunately, Zhukova proved the following result in 2016

[20]:

Lemma 3.9. Let K be a simplicial complex and f : K → R a discrete Morse function

on K. Then there exists a discrete Morse function Bf : B(K) → R on the barycentric
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subdivision B(K) satisfying the following conditions:

(i) Every critical p-face of f contains exactly one critical p-face of Bf .

(ii) There is a bijection between the critical p-faces of K and critical p-faces of B(K).

(iii) There is a bijection between the gradient paths on K and the gradient paths on. B(K)

Again, the proof will be omitted for the sake of brevity; however, the results of [20]

answer our question of whether discrete Morse properties are invariant under barycentric

subdivision. In particular, Lemma 3.8 and Lemma 3.9 give us the following theorem:

Theorem 3.10. Let K be a simplicial complex and f : K → R a discrete Morse function

on K. Then there exists a simplicial complex K ′ with K ′ ∈ MI satisfying the following

conditions:

(i) K ′ is homotopy equivalent to K.

(ii) There is a one-to-one correspondence between critical faces of K and critical faces of

K ′.

(iii) There is a one-to-one correspondence between gradient paths on K and gradient paths

on K ′.

Proof. We first show that the number of p-faces of Bi(∆n) is bounded below by 2i−1 for all

0 ≤ p ≤ n by induction on n ∈ N. Without loss of generality, we may assume that K = ∆n

for some n ≥ 0 (as otherwise, we may look at each simplex σ not contained in a larger

τ ∈ K with σ ≺ τ).

For the base case, we consider ∆1. It is easy to check that the number of edges of

Bi(∆1) is twice the number of edges of Bi−1(∆1) and the number of vertices of Bi(∆1)

is the number of vertices of Bi−1(∆1) plus the number of edges of Bi−1(∆1). If we let

B0(∆1) = ∆1, we have that the number of edges of Bi(∆i) is exactly 2i (since there is only

one edge of ∆1). Since the number of vertices of Bi(∆1) is defined in terms of the number

of edges of Bi−1(∆1), which is exactly 2i−1, we have that the number of 0-faces and 1-faces

of Bi(∆1) is bounded below by 2i−1.
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Next, fix n > 1 and assume that the number of p-faces of Bi(∆k) is bounded below by

2i−1 for all 0 ≤ p ≤ k and 0 ≤ k ≤ n. Consider the (n+1)-simplex ∆n+1. There are exactly(
n+2
n+1

)
= n+2 simplices of dimension n in ∆n+1 — label these simplices as ∆n,1, . . . ,∆n,n+2.

By inductive hypothesis, the number of p-faces of Bi(∆n,j) is bounded below by 2i−1 for all

0 ≤ p ≤ n and 1 ≤ j ≤ n+ 2. Since n > 1, this implies that there are strictly greater than

2 maximal faces of ∆n+1. Therefore, the number of p-faces of Bi(∆n+1) is bounded below

by 2i−1 for all 0 ≤ p ≤ n. The rationale showing that the number of (n + 1)-simplices of

Bi(∆n+1) is the similar to the argument above.

Let m be the number of critical cells on K (with respect to our discrete Morse function

f). Since the number of p-cells of Bi(K) is bounded below by 2i−1, we can find some N

such that the m ≤
(
2N−1

)3/4
and thus m ≤ |BN (K)|3/4. By Lemma 3.8 above, we have

that BN (K) is homotopy equivalent to K. Furthermore, by applying Lemma 3.9 exactly

N times we have that there exists a Morse function Bf,N : BN (K) → R that satisfies

properties (ii) and (iii). By construction, Bf,N only has m critical cells, so the matching

MB corresponding to −∇Bf,N satisfies:

|MB| =
|BN (K)| −m

2
≥ |B

N (K)| − |BN (K)|3/4

2

Therefore, BN (K) ∈MI .

Ultimately, Theorem 3.10 above tells us a few important facts about our class MI of

Morse-ideal simplicial complexes. First off, our class MI is non-empty due to the example

pictured in Figure 3.7. By our theorem above, we have that Bn(∆3) ∈ MI as well for all

Figure 3.7: Maximal matching on ∆3
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n ∈ N — therefore, we are able to conclude that MI is infinite.

One caveat of Theorem 3.10 is that the complexity of computing the Morse homology of

Bi(K) becomes exponentially harder as i becomes large. That is, we constructed the class

MI to describe simplicial complexes for which the computation of Morse homology is more

efficient than the computation of simplicial homology. However, that does not mean that

given a simplicial complex K /∈MI , it is more efficient to compute the Morse homology of

BN (K) than the simplicial homology of K.

Despite the shortcoming mentioned above, it can be easily shown that many low-

dimensional simplicial complexes lie inside our class MI (e.g. dunce cap, real projective

plane). However, one question which remains is whether the class of Morse-ideal simplicial

complexes, when restricted to higher dimensions, consists of only barycentric subdivisions.

Unfortunately, the contents of this thesis will not shed any more light on the nature of our

class MI due to a lack of constraints. Fortunately, the results of Rathod et al. [14] show

that the matchings required for MI are approximable in polynomial time. Indeed, if one

were to restrict focus to, say, manifolds, then our picture of the Morse-deal complexes may

expand significantly. Ultimately, we conclude this thesis by leaving the structure of MI as

an open problem for readers to explore.
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