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Module of Rel. Differentials
Let f : SpecR → Spec S be a morphism of affine schemes and
define the R-module ΩR/S to be the free R-module generated
by {dr : r ∈ R} modulo the relations

(i) d(r1 + r2) = dr1 + dr2 for r1, r2 ∈ R

(ii) (Leibniz Rule) d(r1r2) = r1dr2 + dr1r2 for r1, r2 ∈ R

(iii) ds = 0 for all s ∈ S
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More generally:

Sheaf of Rel. Differentials
Let f : X → Y be a morphism of schemes. Let
∆ : X → X ×Y X be the diagonal morphism and I its ideal
sheaf. Then the Sheaf of Relative Differentials is the sheaf
ΩX/Y = ∆∗(I/I2)

Note: The Module of Relative Differentials and Sheaf of Relative
Differentials are the same on affine open sets.
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Tangent + Canonical Bundle
Let X be a smooth n-dimensional scheme, and suppose X is
smooth (i.e. ΩX/k is locally free of rank n). We define the
tangent bundle TX = Ω∨X/k and the canonical bundle
ωX =

∧n ΩX/k .
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Lemma
Let X = Z (f ) be a smooth hyper-surface of degree d in Pn.
Then the cotangent bundle ΩX is determined by the short exact
sequence

0 −→ OX (−d) −→ i∗ΩPn/k
i∗−→ ΩX/k −→ 0

The tangent bundle TX is determined by the short exact
sequence

0 −→ TX −→ i∗TPn −→ OX (d) −→ 0
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Idea of Proof
The first map is given by φ 7→ d(f φ). If d(f φ) = 0 then
fdφ = φdf ⇒ f is a factor of φ⇒ φ ≡ 0 on OX (−d). i∗

is known to be surj. by previous examples. Since f = 0 on
X we know ker(first map) = im i∗.

Taking duals gives second short exact sequence.
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Recall the following lemma from [2]:

Lemma
Let X be a smooth curve. Then there is an isomorphism of
Abelian groups

{Line bundles L on X} ↔ PicX
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Using previous lemma
One commonly refers to KX as the canonical divisor of
ωX , mapped to under this isomorphism

We define the geometric genus pg to be dimk Γ(X , ωX )



Elliptic Curves

Chris Dare,
Stephen Timmel

I - Canonical
Bundle

II -
Characterization
of Elliptic Curve

III -
Riemann-Roch

IV -
Rieman-Hurwitz

V - Properties of
Elliptic Curves

I - Canonical Bundle

Using previous lemma
One commonly refers to KX as the canonical divisor of
ωX , mapped to under this isomorphism
We define the geometric genus pg to be dimk Γ(X , ωX )



Elliptic Curves

Chris Dare,
Stephen Timmel

I - Canonical
Bundle

II -
Characterization
of Elliptic Curve

III -
Riemann-Roch

IV -
Rieman-Hurwitz

V - Properties of
Elliptic Curves

I - Canonical Bundle

Normal Bundle
Let Y ⊂ X be an irreducible closed subscheme defined by sheaf
of ideals I. If Y is non-singular, I/I2 is locally free and we
refer to

NY /X = (I/I2)∨ = HomOY
(I/I2,OY )

as the Normal Bundle [3]
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Adjunction Formula
There is an exact sequence

0 −→ I/I2 δ−→ ΩX/k ⊗OY −→ ΩY /k −→ 0

where δ sends germ of function to germ of differential.
By taking dual,

0 −→ TY −→ TX ⊗OY −→ NY /X −→ 0
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Adjunction Formula
Taking top dimensional powers,

n∧
TX ⊗OY '

n∧
TY ⊗NY /X

But dual commutes with exterior powers, so

n∧
TY '

n∧
TX ⊗OY ⊗ I/I2 (1)
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Adjunction Formula
If L is invertible sheaf on X then IY ' L−1 so

I/I2 ' L−1 ⊗OY ⇒ NY /X ' L⊗OY

Taking duals in (1) gives adjunction formula

ωY ' ωX ⊗NY /X
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From 3264 [1]:

Corollary
If Y ⊂ X is a non-singular curve in a complete surface X then

degKY = deg
(
(KX + [Y ])[Y ]

)
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Example

Take X = Pn and Ui = {xi 6= 0}. If X0, . . . ,Xn coordinates
for Pn, xk = Xk

Xi
on Ui (for k 6= i), then top dimensional

form ω|Ui
is

ω|Ui
= dx0 ∧ · · · ∧ dxn

If yk = Xk

Xj
on Uj , we have transition functions

gi ,j(xk) =

{
yk/yi k 6= j

1/yi k 6= j
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Example

Gives differential

dgi ,j(xk) =

{
1
yi
dyk − yk

y2
i
dyi k 6= j

−1
y2
i
dyi k = j

Gives pushforward

g ∗(ω|Ui
) = g ∗(dx1 ∧ · · · ∧ dxn)

=
(−1)n

y n+1
i

dy1 ∧ · · · ∧ dyn
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Example

If H = Z (Xi) ⊂ X = Pn is any hyperplane, we have

Div (ω) = (−n − 1)H

and
KPn = (−n − 1)ζ

where ζ ∈ A1(Pn) is class of hyperplane, and lastly

ωPn ' OPn(−n − 1)
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Alternatively: [3]

For X = Pn and Y = SpecA, Euler’s exact sequence is

0 −→ ΩX/Y −→ OX (−1)⊕n+1 −→ OX −→ 0

Taking dual gives us

0 −→ OX −→ OX (1)⊕n+1 −→ TX −→ 0

since ωX =
∧n+1 ΩX/Y , we take n + 1 exterior product of

first sequence to give us isomorphism ωPn ' OPn(−n − 1)
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Definition (Elliptic Curve)
A curve over a field k is an integral scheme C of finite type
with dimC = 1.
We say that C is an elliptic curve if degC = 3.

In particular, we consider elliptic plane curves C ⊂ P2
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II - Characterization of Elliptic Curve
Canonical Bundle of Elliptic Curve

Adjunction Formula: for a non-singular irreducible closed
subscheme Y ⊂ X of codimension 1, have

ωY ' ωX ⊗NY /X ' ωX ⊗OX (Y )|Y

[3] When X = Pn (n ≥ 2) and Y is non-singular
hypersurface of degree d ,

ωY ' ωPn(Y )|Y = OY (d − n − 1)
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II - Characterization of Elliptic Curve

Canonical Bundle of Elliptic Curve
Since any elliptic plane curve C ⊂ P2 has d = degC = 3 then

ωC ' OC

and
pg(C ) = dim Γ(C , ωC ) = dim Γ(C ,OC ) = 1
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II - Characterization of Elliptic Curve

Application to Physics

A separated, smooth scheme X of finite type is said to be
Calabi-Yau if

c1(TX ) = 0⇔ ωX ' OX

The only complex Calabi-Yau 1-folds are elliptic curves
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II - Characterization of Elliptic Curve

First Chern Class of Curve
Let X ⊂ P2 be a curve and E = L(D) be the invertible sheaf
associated to some divisor D

By definition we have
ΩX/k = L(KX )⇒ TX = Ω∨X/k = L(−KX )

Recall c1(E∨) = −c1(E) for locally free sheaf E
Since dimX = 1, have ΩX/k = ωx
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II - Characterization of Elliptic Curve
First Chern Class of Curve
Then

c1(TX ) = c1(L(−KX )) = −c1(L(KX )) = −c1(ωX ) = −KX

From above (and [1]) we know that

KX = (d − n − 1)ζ

where ζ = c1(OX (1)) ∈ A1(X ) class of hyperplane section.
Then

c1(TX ) = (n + 1− d)ζ
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So far, we have characterized elliptic curves as the simplest
members of the broader space of Calibi-Yau schemes.
There are more specific things we can say about elliptic
curves, but we will need to rely heavily on the
Riemann-Roch Theorem to prove anything useful (also
Riemann-Hurwitz).
Notation in this section will blend Perrin [4], Gathmann [2]
and Hartshorne [3]
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Sheaf Cohomology
As described in [4], taking global sections of the exact sequence
of OX -modules

0 −→ F −→ G −→ H −→ 0

yields an exact sequence

0 −→ Γ(X ,F) −→ Γ(X ,G)
π−→ Γ(X ,H)

where π need not be a surjection.
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C̆ech complexes

Given a sheaf F on the scheme X and fixed open cover
{Ui}, define an abelian group

CP(F) =
∏

i0<...<ip

F(Ui0 ∩ Ui1 ∩ . . . ∩ Uip)

where α ∈ C p is a collection of independent sections
αi0,...,ip of F .
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C̆ech complexes

Define a boundary operator dp : C p → C p+1 composed of
the sections

(dpα)i0,i1,...,ip+1 =

p+1∑
k=0

(−1)kαi0,...,ik−1,ik+1,...,ip+1

∣∣∣∣
Ui1∩Ui2∩...∩Uip+1

The (−1)k term guarantees that dp+1 ◦ dp = 0, so we
know ker(dp+1) ⊂ im(dp)

In general, this inclusion is strict, so no exact sequence yet.
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C̆ech complexes

We can force the dp to form an exact sequence by taking a
quotient
Defining Hp(X ,F) = ker(dp)/im(dp−1) and defining the
degenerate cases p < 0 using C p = 0 and dp = 0, we get
H0(X ,F) = Γ(F) and the exact sequence

0 −→ Γ(F) −→ Γ(G) −→ Γ(H) −→ H1(X ,F) −→ H1(X ,G) −→ . . .

(proved by diagram chasing)
This embeds the exact sequence we wanted in an infinite
sequence of unknown terms.
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Additional Remarks
This construction gives the same result independent of
open cover
Proof idea from §8.5 of [2]

First show that affine schemes satisfy H i(X ,F) = 0 for i > 0

The restriction map from H̃p(X ,F ) defined on the open cover
{U0,U1, . . . ,Un} to Hp(X ,F ) defined on the open cover
{U1,U2, . . . ,Un} is an isomorphism
By repeated application of the above, we can add and remove
any number of open sets from the cover.
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Motivation
Since curves have dimension 1, we know that
dimkH

i(X ,F) = 0 for i > 1 [4]
To use our long exact sequence, we need some knowledge
of dimkH

1(X ,F)

Riemann-Roch will help us evaluate the difference
dimkH

0(X ,F)− dimkH
1(X ,F)

We will need some additional knowledge of dimkH
1(X ,F)

when we apply the formula [2]
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The Riemann-Roch Theorem
If C is an irreducible projective curve of degree d and genus g ,
we have for all n the relation of graded components

dimk H
0(C ,OC (n))− dimkH

1(C ,OC (n)) = nd + 1− g
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Proof (mostly from [4] VIII.1.5)
Let A = k[X0, . . . ,Xn]/I (C ) and note that A has
associated sheaf OC

Let H be some hyperplane not containing C , and suppose
the equation of H corresponds to h ∈ A

Defining φ to be multiplication by h, we get the exact
sequence

0 −→ A(−1)
φ−→ A −→ A/(h) −→ 0
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Mapping this sequence to sheaves and shifting by n, we get

0 −→ OC (n − 1)
φ−→ OC (n) −→ OC∩H(n) −→ 0

If we define for convenience

χ(OC (n)) = dimkH
0(C ,OC (n))− dimkH

1(C ,OC (n))

our exact sequence gives us the relation

χ(OC (n)) = χ(OC (n − 1)) + χ(OC∩H(n))
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Since C has dimension 1, the intersection C ∩ H has
dimension 0 and consists of finitely many points
By dimensionality, dimkH1(C ,OC ) = 0 and we know that
dimkH0(C ,OC ) = dimkΓ(OC ) = d .
Simplifying and using induction, we get

χ(OC (n)) = χ(OC (n − 1)) + d

χ(OC (n)) = χ(OC ) + nd
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This leaves the expansion of χ(OC ).
We have the identity

H0(C ,OC ) = Γ(OC ) = k

since the only functions over all of OC are constant.
Therefore, dimkH

0(C ,OC ) = 1.
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The last term dimkH
1(C ,OC ) is sometimes used as an

alternate definition of the arithmetic genus
We are used to the arithmetic genus being the constant
term of the Hilbert Polynomial.
To relate these two forms, we start with another form of
the Hilbert polynomial P(n) given in [3]

P(n) = χ(F(n)) =
∑
i

(−1)idimkH
i(X ,F(n))
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The constant term of this expression can be calculated as

g =
r−1∑
i=0

(−1)idimkH
r−i(C ,OC )

In dimension 1, this simplifies to g = H1(C ,OX )

Combining the terms we have already described, we get

dimkH
0(C ,OC (n))− dimkH

1(C ,OC (n)) = nd + 1− g
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Related Theorems
There are a number of equivalent statements that are commonly
associated to Riemann-Roch (most easily proved using Serre
duality)

Let K be a canonical divisor

dimkH
0(D)− dimkH

0(K − D) = deg(D) + 1− g

(Riemann) For large n, we have

dimk(C ,OC (n) = nd + 1− g
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Motivation
So far, we have developed tools for understanding the
dimension of global sections over sheaves
Riemann-Hurwitz gives a similar set of tools for individual
points through the ramification divisor.
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Ramification
Recall that for smooth curves the Picard group of divisors
is isomorphic to the set of line bundles Pic ′

Given a smooth map f : X → Y we can define a pullback
map on divisors by pulling back the associated line bundles
Given a point P , we can treat its image f (P) as a divisor.
This lets us compute the subscheme f −1(f (P))

The dimension of this subscheme is the ramification index
eP at P .
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A point is unramified if its index is 1, and ramified
otherwise.
We will assume a field of characteristic 0 in this section
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Ramification Divisor
Define ΩX/Y as before
The Ramification Divisor is defined to be

R =
∑
P∈X

len(ΩX/Y )P · P

We will demonstrate that this formal sum contains ramified
points counted with their ramification.
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Riemann-Hurwitz
(Riemann-Hurwitz) Let f : X → Y be a finite separable
morphism of curves and n = degf . Then

2g(X )− 2 = n · (2g(Y )− 2) + degR

Additionally, degR satisfies

degR =
∑
P∈X

(eP − 1)
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Proof idea
The following sequence is exact

0 −→ f ∗ΩY −→ ΩX −→ ΩX/Y −→ 0

From this sequence, ΩX/Y is supported on the ramification
points of f .
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If f has ramification index e at P we substitute t = aue for unit
a and differentiate

dt = aeue−1du + ueda

Finding the highest power with nonzero coefficient gives

length(ΩX/Y )P = e − 1

Note: We just proved the second part of the theorem
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Let KX ,KY be canonical divisors. Using the same kind of
local calculation as before, we can show (as in [2]) that

KX = f ∗KY + R
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To convert this equation into the first part of the theorem,
note by Riemann-Roch that the canonical divisor has
degree 2g − 2 (substitute D = K into the alternate form)

dimkH
0(K )− dimkH

0(K − K ) = deg(K ) + 1− g

Noting that f ∗ multiplies degrees by n = deg(f ), we
expand

degKX = deg(f ∗KY ) + deg(R)

2g(X )− 2 = n(2g(Y )− 2) + deg(R)
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So far, we have largely avoided discussing elliptic curves
The general theorems we have proved can be applied to
demonstrate some interesting properties of elliptic curves
We conclude by showing that the family of elliptic curves
over Pn is indexed by k
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The j-invariant

The canonical parameterization φ : P1 → K onto an
elliptic curve has ramified points where the curve has
branch points.
Given a branch point P0, consider the divisor 2P0.
The linear system of equivalent divisors has dimension 1 by
Riemann-Roch (alternate form), so it induces a map
f : X → P1 with degree 2.
Applying Riemann-Hurwitz to the map f gives four
ramified points.
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The j-invariant

We change coordinates to fix f (P1) =∞.
If the other two points are a, b we apply the following
transformation, which fixes ∞ and sends a, b to 0, 1

x ′ =
x − a

b − a
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The j-invariant

We now have an elliptic curve with branch points 0, 1,∞, λ
for some λ
Define a function on λ

j(λ) = 28 (λ2 − λ + 1)3

λ2(λ− 1)2

The 28 is a convenience that produces non-singular values
over characteristic 2, and the remaining terms are chosen
so j is an invariant, unique property of the curve K
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Claim
1. The value j does not depend on the choice of λ for a given

curve K
2. The value j is unique to a curve K (two curves are

isomorphic iff they have the same j)
3. The family of elliptic curves covers all possible j
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Proof Idea
1. Consider two morphisms f1, f2. By diagram chasing, we can

find automorphisms τ1, τ2 so that f1 and τ−1
2 f2τ1 send the

same branch point to infinity.
To check permutations of the other three branch points, we
can permute 0, 1, λ by σ and find a map φ to transform
σ0, σ1 back to 0, 1. The values φ(σ(λ)) are generated by
the actions

λ→ 1/λ λ→ 1− λ
so we check that j preserves these actions
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3 Given a j ′ ∈ K , we can solve the original equation to find a
value of λ with j(λ) = j ′. The equation
y 2 = x(x − 1)(x − λ) is an elliptic curve with j(λ) = j ′
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2 We proceed by proving an important lemma that will
render the original assertion trivial.

Lemma: Fix a branch point P0. There is a closed immersion
K → P2 whose image is

y 2 = x(x − 1)(x − λ)

This map sends P0 to infinity, and this λ is the same as before
up to the transformation φ ◦ σ described earlier.
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Proof of Lemma

We start by generating a map from the closed immersion
sending the set of divisors equivalent to 3P0 to P2 (this has
dimension 2 by Riemann-Roch)
We also know by the alternate form of Riemann-Roch that
dimH0(O(nP0)) = n (taking nP0 as a divisor).
Considering the inclusion

H0(O(2P0)) ⊂ H0(O(3P0) ⊂ H0(O(6P0)

we can choose x , y so 1, x is a basis for H0(O(2P0)) and
1, x , y is a basis for H0(O(3P0))
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The monomials that can show up in an elliptic curve are
1, x , y , x2, xy , x3, y 2 and are all contained in H0(O(6P0)),
so they cannot be linearly independent
Our monomials only describe an elliptic curve when x3, y 2

both appear with nonzero coefficient, and we can scale the
coordinate system so both have coefficient 1.
Writing down an arbitrary linear dependence and
completing the square gives

y 2 = (x − a)(x − b)(x − c)
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We can apply the same linear transformation used to derive
j to send a, b to 0, 1. This gives the final result

y 2 = x(x − 1)(x − λ)

Both curves have a pole at P0 by construction, which is
sent to ∞.
Projecting from P0 to the x-axis gives a morphism sending
P0 to infinity and ramified at the points 0, 1, λ,∞, so λ is
one of the branch points in our other derivation.
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Using the Lemma
Finishing our proof of (2):

j is a rational function of degree 6 which induces a map
λ→ j of degree 6.
This covering is Galois because the functional spaces have
automorphism group S3.

We already noted that specific elements of the automorphism
group correspond to permutations of the finite branch points.

Therefore, j(λ) = j(λ′) iff λ, λ′ are related by an
automorphism and the proof is complete.
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