Elliptic Curves

Chris Dare, Stephen Timmel

Virginia Polytechnic Institute and State University

July 20, 2019

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle ..

Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

/ - Properties of Elliptic Curves

Sections

- I Canonical Bundle
- II Characterization of Elliptic Curve
- III Riemann-Roch
- IV Rieman-Hurwitz
- V Properties of Elliptic Curves

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

/ - Properties of Elliptic Curves

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日下

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

/ - Properties of Elliptic Curves

Module of Rel. Differentials

Let $f : \operatorname{Spec} R \to \operatorname{Spec} S$ be a morphism of affine schemes and define the *R*-module $\Omega_{R/S}$ to be the free *R*-module generated by $\{dr : r \in R\}$ modulo the relations

(i)
$$d(r_1 + r_2) = dr_1 + dr_2$$
 for $r_1, r_2 \in R$
(ii) **(Leibniz Rule)** $d(r_1r_2) = r_1dr_2 + dr_1r_2$ for $r_1, r_2 \in R$
(iii) $ds = 0$ for all $s \in S$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

More generally:

Sheaf of Rel. Differentials Let $f : X \to Y$ be a morphism of schemes. Let $\Delta : X \to X \times_Y X$ be the diagonal morphism and \mathcal{I} its ideal sheaf. Then the **Sheaf of Relative Differentials** is the sheaf $\Omega_{X/Y} = \Delta^*(\mathcal{I}/\mathcal{I}^2)$

Note: The Module of Relative Differentials and Sheaf of Relative Differentials are the same on affine open sets.

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

V -Rieman-Hurwitz

Tangent + Canonical Bundle

Let X be a smooth *n*-dimensional scheme, and suppose X is smooth (i.e. $\Omega_{X/k}$ is locally free of rank *n*). We define the **tangent bundle** $\mathcal{T}_X = \Omega_{X/k}^{\vee}$ and the **canonical bundle** $\omega_X = \bigwedge^n \Omega_{X/k}$.

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Lemma

Let X = Z(f) be a smooth hyper-surface of degree d in \mathbb{P}^n . Then the cotangent bundle Ω_X is determined by the short exact sequence

$$0 o \mathcal{O}_X(-d) o i^* \Omega_{\mathbb{P}^n/k} \xrightarrow{i^*} \Omega_{X/k} o 0$$

The tangent bundle \mathcal{T}_X is determined by the short exact sequence

$$0 o \mathcal{T}_X o i^*\mathcal{T}_{\mathbb{P}^n} o \mathcal{O}_X(d) o 0$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Idea of Proof

• The first map is given by $\phi \mapsto d(f\phi)$. If $d(f\phi) = 0$ then $fd\phi = \phi df \Rightarrow f$ is a factor of $\phi \Rightarrow \phi \equiv 0$ on $\mathcal{O}_X(-d)$. i^* is known to be surj. by previous examples. Since f = 0 on X we know ker(first map) = im i^* .

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Idea of Proof

- The first map is given by $\phi \mapsto d(f\phi)$. If $d(f\phi) = 0$ then $fd\phi = \phi df \Rightarrow f$ is a factor of $\phi \Rightarrow \phi \equiv 0$ on $\mathcal{O}_X(-d)$. i^* is known to be surj. by previous examples. Since f = 0 on X we know ker(first map) = im i^* .
- Taking duals gives second short exact sequence.

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Recall the following lemma from [2]:

Lemma

Let X be a smooth curve. Then there is an isomorphism of Abelian groups

 $\{Line \ bundles \ \mathcal{L} \ on \ X\} \leftrightarrow Pic \ X$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Using previous lemma

One commonly refers to K_X as the canonical divisor of ω_X, mapped to under this isomorphism

Elliptic Curves

Chris Dare, Stephen Timmel

l - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Using previous lemma

One commonly refers to K_X as the canonical divisor of ω_X, mapped to under this isomorphism

Elliptic Curves

Chris Dare, Stephen Timme

I - Canonical Bundle

Characterization of Elliptic Curve

Riemann-Roch

V - Properties of Elliptic Curves

• We define the geometric genus p_g to be $\dim_k \Gamma(X, \omega_X)$

Normal Bundle Let $Y \subset X$ be an irreducible closed subscheme defined by sheaf of ideals \mathcal{I} . If Y is non-singular, $\mathcal{I}/\mathcal{I}^2$ is locally free and we refer to

$$\mathcal{N}_{Y/X} = (\mathcal{I}/\mathcal{I}^2)^{\vee} = \operatorname{Hom}_{\mathcal{O}_Y}(\mathcal{I}/\mathcal{I}^2, \mathcal{O}_Y)$$

as the Normal Bundle [3]

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Adjunction Formula

There is an exact sequence

$$0 o \mathcal{I}/\mathcal{I}^2 \xrightarrow{\delta} \Omega_{X/k} \otimes \mathcal{O}_Y o \Omega_{Y/k} o 0$$

where δ sends germ of function to germ of differential. By taking dual,

$$0 \to \mathcal{T}_Y \to \mathcal{T}_X \otimes \mathcal{O}_Y \to \mathcal{N}_{Y/X} \to 0$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve III -Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ◇◇◇

Adjunction Formula

Taking top dimensional powers,

$$\bigwedge^n \mathcal{T}_X \otimes \mathcal{O}_Y \simeq \bigwedge^n \mathcal{T}_Y \otimes \mathcal{N}_{Y/X}$$

But dual commutes with exterior powers, so

$$\bigwedge^n \mathcal{T}_Y \simeq \bigwedge^n \mathcal{T}_X \otimes \mathcal{O}_Y \otimes \mathcal{I}/\mathcal{I}^2$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

 V - Properties of Elliptic Curves

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

(1)

Adjunction Formula

If \mathcal{L} is invertible sheaf on X then $\mathcal{I}_Y \simeq \mathcal{L}^{-1}$ so

$$\mathcal{I}/\mathcal{I}^2\simeq\mathcal{L}^{-1}\otimes\mathcal{O}_Y\Rightarrow\mathcal{N}_{Y/X}\simeq\mathcal{L}\otimes\mathcal{O}_Y$$

Taking duals in (1) gives adjunction formula

$$\omega_{Y} \simeq \omega_{X} \otimes \mathcal{N}_{Y/X}$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

From 3264 [1]: Corollary If $Y \subset X$ is a non-singular curve in a complete surface X then $\deg K_Y = \deg ((K_X + [Y])[Y])$

Chris Dare, Stephen Timmel

Bundle II -Characterization of Elliptic Curve

I - Canonical

III -Riemann-Roch

IV -Rieman-Hurwitz

• Take
$$X = \mathbb{P}^n$$
 and $U_i = \{x_i \neq 0\}$. If X_0, \ldots, X_n coordinates for \mathbb{P}^n , $x_k = \frac{X_k}{X_i}$ on U_i (for $k \neq i$), then top dimensional form $\omega|_{U_i}$ is

$$\omega|_{U_i} = dx_0 \wedge \cdots \wedge dx_n$$

Elliptic Curves

Chris Dare, Stephen Tim<u>mel</u>

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

/ - Properties of Elliptic Curves

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ■ - のへで

• Take
$$X = \mathbb{P}^n$$
 and $U_i = \{x_i \neq 0\}$. If X_0, \ldots, X_n coordinates for \mathbb{P}^n , $x_k = \frac{X_k}{X_i}$ on U_i (for $k \neq i$), then top dimensional form $\omega|_{U_i}$ is

$$\omega|_{U_i} = dx_0 \wedge \cdots \wedge dx_n$$

• If
$$y_k = \frac{X_k}{X_j}$$
 on U_j , we have transition functions

$$g_{i,j}(x_k) = egin{cases} y_k/y_i & k
eq j \ 1/y_i & k
eq j \end{cases}$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

• Gives differential

$$dg_{i,j}(x_k) = egin{cases} rac{1}{y_i} dy_k - rac{y_k}{y_i^2} dy_i & k
eq j \ rac{-1}{y_i^2} dy_i & k = j \end{cases}$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

111 -Riemann-Roch

IV -Rieman-Hurwitz

• Gives differential

$$dg_{i,j}(x_k) = egin{cases} rac{1}{y_i} dy_k - rac{y_k}{y_i^2} dy_i & k
eq j \ rac{-1}{y_i^2} dy_i & k = j \end{cases}$$

• Gives pushforward

$$g^*(\omega|_{U_i}) = g^*(dx_1 \wedge \cdots \wedge dx_n)$$

= $\frac{(-1)^n}{y_i^{n+1}} dy_1 \wedge \cdots \wedge dy_n$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve III -Riemann-Roch

Rieman-Hurwitz

Example

• If $H = Z(X_i) \subset X = \mathbb{P}^n$ is any hyperplane, we have $\mathsf{Div}\,(\omega) = (-n-1)H$

and

$$K_{\mathbb{P}^n} = (-n-1)\zeta$$

where $\zeta \in A^1(\mathbb{P}^n)$ is class of hyperplane, and lastly

$$\omega_{\mathbb{P}^n}\simeq \mathcal{O}_{\mathbb{P}^n}(-n-1)$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve III -Riemann-Roch

IV -Rieman-Hurwitz

Alternatively: [3]

• For $X = \mathbb{P}^n$ and $Y = \operatorname{Spec} A$, Euler's exact sequence is

$$0 \to \Omega_{X/Y} \to \mathcal{O}_X(-1)^{\oplus n+1} \to \mathcal{O}_X \to 0$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

/ - Properties of Elliptic Curves

・ロト ・四ト ・ヨト ・ヨー うへぐ

Alternatively: [3] • For $X = \mathbb{P}^n$ and $Y = \operatorname{Spec} A$, Euler's exact sequence is

$$0 \to \Omega_{X/Y} \to \mathcal{O}_X(-1)^{\oplus n+1} \to \mathcal{O}_X \to 0$$

• Taking dual gives us

$$0 \to \mathcal{O}_X \to \mathcal{O}_X(1)^{\oplus n+1} \to \mathcal{T}_X \to 0$$

since $\omega_X = \bigwedge^{n+1} \Omega_{X/Y}$, we take n+1 exterior product of first sequence to give us isomorphism $\omega_{\mathbb{P}^n} \simeq \mathcal{O}_{\mathbb{P}^n}(-n-1)$

・ロト ・西ト ・川田 ・ 山下 ・ 日 ・ シック

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Elliptic Curves

Chris Dare, Stephen Timmel

l - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

/ - Properties of Elliptic Curves

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Definition (Elliptic Curve)

A **curve** over a field k is an integral scheme C of finite type with dim C = 1. We say that C is an **elliptic curve** if deg C = 3.

• In particular, we consider elliptic plane curves $\mathcal{C} \subset \mathbb{P}^2$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

II - Characterization of Elliptic Curve Canonical Bundle of Elliptic Curve

• Adjunction Formula: for a non-singular irreducible closed subscheme $Y \subset X$ of codimension 1, have

$$\omega_Y \simeq \omega_X \otimes \mathcal{N}_{Y/X} \simeq \omega_X \otimes \mathcal{O}_X(Y)|_Y$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

II - Characterization of Elliptic Curve Canonical Bundle of Elliptic Curve

• Adjunction Formula: for a non-singular irreducible closed subscheme $Y \subset X$ of codimension 1, have

$$\omega_Y \simeq \omega_X \otimes \mathcal{N}_{Y/X} \simeq \omega_X \otimes \mathcal{O}_X(Y)|_Y$$

[3] When X = ℙⁿ (n ≥ 2) and Y is non-singular hypersurface of degree d,

$$|\omega_Y \simeq \omega_{\mathbb{P}^n}(Y)|_Y = \mathcal{O}_Y(d-n-1)$$

▲ロト ▲圖ト ▲国ト ▲国ト 三目 - のへぐ

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Canonical Bundle of Elliptic Curve

Since any elliptic plane curve $C \subset \mathbb{P}^2$ has $d = \deg C = 3$ then

$$\omega_{\mathcal{C}} \simeq \mathcal{O}_{\mathcal{C}}$$

and

$$p_g(C) = \dim \Gamma(C, \omega_C) = \dim \Gamma(C, \mathcal{O}_C) = 1$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

・ロト・日本・ キョト・ キョー うへぐ

Application to Physics

• A separated, smooth scheme X of finite type is said to be **Calabi-Yau** if

$$c_1(\mathcal{T}_X) = 0 \Leftrightarrow \omega_X \simeq \mathcal{O}_X$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Application to Physics

• A separated, smooth scheme X of finite type is said to be **Calabi-Yau** if

$$c_1(\mathcal{T}_X) = 0 \Leftrightarrow \omega_X \simeq \mathcal{O}_X$$

• The only complex Calabi-Yau 1-folds are elliptic curves

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

First Chern Class of Curve Let $X \subset \mathbb{P}^2$ be a curve and $\mathcal{E} = \mathcal{L}(D)$ be the invertible sheaf associated to some divisor D

Elliptic Curves

Chris Dare, Stephen Timme

I - Canonical Bundle

Characterization of Elliptic Curve

Riemann-Roch

V - Properties of

Elliptic Curves

11 -

• By definition we have $\Omega_{X/k} = \mathcal{L}(\mathcal{K}_X) \Rightarrow \mathcal{T}_X = \Omega_{X/k}^{ee} = \mathcal{L}(-\mathcal{K}_X)$

First Chern Class of Curve Let $X \subset \mathbb{P}^2$ be a curve and $\mathcal{E} = \mathcal{L}(D)$ be the invertible sheaf associated to some divisor D

- By definition we have $\Omega_{X/k} = \mathcal{L}(K_X) \Rightarrow \mathcal{T}_X = \Omega_{X/k}^{\vee} = \mathcal{L}(-K_X)$
- Recall $c_1(\mathcal{E}^{ee}) = -c_1(\mathcal{E})$ for locally free sheaf \mathcal{E}

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

First Chern Class of Curve Let $X \subset \mathbb{P}^2$ be a curve and $\mathcal{E} = \mathcal{L}(D)$ be the invertible sheaf associated to some divisor D

- By definition we have $\Omega_{X/k} = \mathcal{L}(\mathcal{K}_X) \Rightarrow \mathcal{T}_X = \Omega_{X/k}^{\vee} = \mathcal{L}(-\mathcal{K}_X)$
- Recall $c_1(\mathcal{E}^{\vee}) = -c_1(\mathcal{E})$ for locally free sheaf \mathcal{E}
- Since dim X = 1, have $\Omega_{X/k} = \omega_x$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

First Chern Class of Curve Then

$$c_1(\mathcal{T}_X)=c_1(\mathcal{L}(-\mathcal{K}_X))=-c_1(\mathcal{L}(\mathcal{K}_X))=-c_1(\omega_X)=-\mathcal{K}_X$$

From above (and [1]) we know that

$$K_X = (d - n - 1)\zeta$$

where $\zeta = c_1(\mathcal{O}_X(1)) \in A^1(X)$ class of hyperplane section. Then

$$c_1(\mathcal{T}_X) = (n+1-d)\zeta$$

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今 の ・ (日)

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

III - Riemann-Roch

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

/ - Properties of Elliptic Curves
- So far, we have characterized elliptic curves as the simplest members of the broader space of Calibi-Yau schemes.
- There are more specific things we can say about elliptic curves, but we will need to rely heavily on the Riemann-Roch Theorem to prove anything useful (also Riemann-Hurwitz).
- Notation in this section will blend Perrin [4], Gathmann [2] and Hartshorne [3]

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Sheaf Cohomology

As described in [4], taking global sections of the exact sequence of \mathcal{O}_X -modules

$$0
ightarrow \mathcal{F}
ightarrow \mathcal{G}
ightarrow \mathcal{H}
ightarrow 0$$

yields an exact sequence

$$0 \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{G}) \xrightarrow{\pi} \Gamma(X, \mathcal{H})$$

where π need not be a surjection.

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Čech complexes

• Given a sheaf \mathcal{F} on the scheme X and fixed open cover $\{U_i\}$, define an abelian group

$$C^P(\mathcal{F}) = \prod_{i_0 < \ldots < i_p} \mathcal{F}(U_{i_0} \cap U_{i_1} \cap \ldots \cap U_{i_p})$$

where $\alpha \in C^{p}$ is a collection of independent sections $\alpha_{i_{0},...,i_{p}}$ of \mathcal{F} .

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Čech complexes

• Define a boundary operator $d^p: C^p o C^{p+1}$ composed of the sections

$$(d^{p}\alpha)_{i_{0},i_{1},...,i_{p+1}} = \sum_{k=0}^{p+1} (-1)^{k} \alpha_{i_{0},...,i_{k-1},i_{k+1},...,i_{p+1}} \bigg|_{U_{i_{1}} \cap U_{i_{2}} \cap ... \cap U_{i_{p+1}}}$$

- The $(-1)^k$ term guarantees that $d^{p+1} \circ d^p = 0$, so we know $\ker(d^{p+1}) \subset \operatorname{im}(d^p)$
- In general, this inclusion is strict, so no exact sequence yet.

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

III - Riemann-Roch Čech complexes

- We can force the d^p to form an exact sequence by taking a quotient
- Defining H^p(X, F) = ker(d^p)/im(d^{p-1}) and defining the degenerate cases p < 0 using C^p = 0 and d^p = 0, we get H⁰(X, F) = Γ(F) and the exact sequence

$$0 o \Gamma(\mathcal{F}) o \Gamma(\mathcal{G}) o \Gamma(\mathcal{H}) o H^1(X,\mathcal{F}) o H^1(X,\mathcal{G}) o .$$

(proved by diagram chasing)

• This embeds the exact sequence we wanted in an infinite sequence of unknown terms.

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Additional Remarks

- This construction gives the same result independent of open cover
- Proof idea from §8.5 of [2]
 - First show that affine schemes satisfy $H^i(X, \mathcal{F}) = 0$ for i > 0

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Additional Remarks

- This construction gives the same result independent of open cover
- Proof idea from §8.5 of [2]
 - First show that affine schemes satisfy $H^i(X, \mathcal{F}) = 0$ for i > 0
 - The restriction map from H
 ^p(X, F) defined on the open cover {U₀, U₁,..., U_n} to H^p(X, F) defined on the open cover {U₁, U₂,..., U_n} is an isomorphism

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Additional Remarks

- This construction gives the same result independent of open cover
- Proof idea from §8.5 of [2]
 - First show that affine schemes satisfy $H^i(X, \mathcal{F}) = 0$ for i > 0
 - The restriction map from H
 ^p(X, F) defined on the open cover {U₀, U₁,..., U_n} to H^p(X, F) defined on the open cover {U₁, U₂,..., U_n} is an isomorphism
 - By repeated application of the above, we can add and remove any number of open sets from the cover.

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Motivation

- Since curves have dimension 1, we know that $\dim_k H^i(X, \mathcal{F}) = 0$ for i > 1 [4]
- To use our long exact sequence, we need some knowledge of $\dim_k H^1(X, \mathcal{F})$
- Riemann-Roch will help us evaluate the difference $\dim_k H^0(X, \mathcal{F}) \dim_k H^1(X, \mathcal{F})$
- We will need some additional knowledge of $\dim_k H^1(X, \mathcal{F})$ when we apply the formula [2]

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

The Riemann-Roch Theorem

If C is an irreducible projective curve of degree d and genus g, we have for all n the relation of graded components

$$\dim_k H^0(\mathcal{C},\mathcal{O}_{\mathcal{C}}(n)) - \dim_k H^1(\mathcal{C},\mathcal{O}_{\mathcal{C}}(n)) = nd + 1 - g$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Proof (mostly from [4] VIII.1.5)

- Let $A = k[X_0, ..., X_n]/I(C)$ and note that A has associated sheaf \mathcal{O}_C
- Let H be some hyperplane not containing C, and suppose the equation of H corresponds to $h \in A$
- Defining ϕ to be multiplication by h, we get the exact sequence

$$0 \rightarrow A(-1) \stackrel{\phi}{\rightarrow} A \rightarrow A/(h) \rightarrow 0$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

• Mapping this sequence to sheaves and shifting by n, we get

$$0 \to \mathcal{O}_C(n-1) \stackrel{\phi}{\to} \mathcal{O}_C(n) \to \mathcal{O}_{C \cap H}(n) \to 0$$

• If we define for convenience

$$\chi(\mathcal{O}_{\mathcal{C}}(n)) = \dim_k H^0(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(n)) - \dim_k H^1(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(n))$$

our exact sequence gives us the relation

$$\chi(\mathcal{O}_{\mathcal{C}}(n)) = \chi(\mathcal{O}_{\mathcal{C}}(n-1)) + \chi(\mathcal{O}_{\mathcal{C}\cap H}(n))$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

- Since C has dimension 1, the intersection C ∩ H has dimension 0 and consists of finitely many points
- By dimensionality, $dim_k H_1(C, \mathcal{O}_C) = 0$ and we know that $dim_k H_0(C, \mathcal{O}_C) = dim_k \Gamma(\mathcal{O}_C) = d$.
- Simplifying and using induction, we get

$$\chi(\mathcal{O}_{C}(n)) = \chi(\mathcal{O}_{C}(n-1)) + d$$

 $\chi(\mathcal{O}_{C}(n)) = \chi(\mathcal{O}_{C}) + nd$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

くして 山 ふかく 山 てんきょう 日本

- This leaves the expansion of $\chi(\mathcal{O}_C)$.
- We have the identity

$$H^0(C, \mathcal{O}_C) = \Gamma(\mathcal{O}_C) = k$$

since the only functions over all of $\mathcal{O}_{\mathcal{C}}$ are constant.

• Therefore, $dim_k H^0(C, \mathcal{O}_C) = 1$.

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

- The last term $dim_k H^1(C, \mathcal{O}_C)$ is sometimes used as an alternate definition of the arithmetic genus
- We are used to the arithmetic genus being the constant term of the Hilbert Polynomial.
- To relate these two forms, we start with another form of the Hilbert polynomial *P*(*n*) given in [3]

$$P(n) = \chi(\mathcal{F}(n)) = \sum_{i} (-1)^{i} dim_{k} H^{i}(X, \mathcal{F}(n))$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

• The constant term of this expression can be calculated as

$$g = \sum_{i=0}^{r-1} (-1)^i dim_k H^{r-i}(\mathcal{C}, \mathcal{O}_{\mathcal{C}})$$

- In dimension 1, this simplifies to $g = H^1(C, \mathcal{O}_X)$
- Combining the terms we have already described, we get

$${\it dim}_k {\it H}^0({\it C},{\it O}_{\it C}({\it n}))-{\it dim}_k {\it H}^1({\it C},{\it O}_{\it C}({\it n}))={\it nd}+1-{\it g}$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Related Theorems

There are a number of equivalent statements that are commonly associated to Riemann-Roch (most easily proved using Serre duality)

• Let K be a canonical divisor

$$dim_k H^0(D) - dim_k H^0(K-D) = deg(D) + 1 - g$$

• (Riemann) For large n, we have

$$dim_k(C, \mathcal{O}_C(n) = nd + 1 - g$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Elliptic Curves

Chris Dare, Stephen Timmel

l - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

/ - Properties of Elliptic Curves

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 のへぐ

Motivation

- So far, we have developed tools for understanding the dimension of global sections over sheaves
- Riemann-Hurwitz gives a similar set of tools for individual points through the ramification divisor.

Elliptic Curves

Chris Dare, Stephen Timmel

l - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Ramification

- Recall that for smooth curves the Picard group of divisors is isomorphic to the set of line bundles *Pic'*
- Given a smooth map $f: X \to Y$ we can define a pullback map on divisors by pulling back the associated line bundles
- Given a point P, we can treat its image f(P) as a divisor.
 This lets us compute the subscheme f⁻¹(f(P))
- The dimension of this subscheme is the ramification index e_P at P.

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

• A point is unramified if its index is 1, and ramified otherwise.

• We will assume a field of characteristic 0 in this section

Elliptic Curves

Chris Dare, Stephen Tim<u>mel</u>

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hur<u>witz</u>

Ramification Divisor

- Define $\Omega_{X/Y}$ as before
- The Ramification Divisor is defined to be

$$R = \sum_{P \in X} \mathit{len}(\Omega_{X/Y})_P \cdot P$$

• We will demonstrate that this formal sum contains ramified points counted with their ramification.

Elliptic Curves

Chris Dare, Stephen Timmel

l - Canonical Bundle

Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Riemann-Hurwitz

(Riemann-Hurwitz) Let $f : X \rightarrow Y$ be a finite separable morphism of curves and n = degf. Then

$$2g(X) - 2 = n \cdot (2g(Y) - 2) + degR$$

Additionally, *degR* satisfies

$$degR = \sum_{P \in X} (e_P - 1)$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

くして 山田 ふかく 山下 ふゆう ふしつ

Proof idea

• The following sequence is exact

$$0 o f^*\Omega_Y o \Omega_X o \Omega_{X/Y} o 0$$

• From this sequence, $\Omega_{X/Y}$ is supported on the ramification points of f.

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -

Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

If f has ramification index e at P we substitute $t = au^e$ for unit a and differentiate

$$dt = aeu^{e-1}du + u^e da$$

Finding the highest power with nonzero coefficient gives

$$length(\Omega_{X/Y})_P = e - 1$$

Note: We just proved the second part of the theorem

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

• Let K_X, K_Y be canonical divisors. Using the same kind of local calculation as before, we can show (as in [2]) that

$$K_X = f^* K_Y + R$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• To convert this equation into the first part of the theorem, note by Riemann-Roch that the canonical divisor has degree 2g - 2 (substitute D = K into the alternate form)

$$dim_k H^0(K) - dim_k H^0(K - K) = deg(K) + 1 - g$$

Noting that f* multiplies degrees by n = deg(f), we expand

$$degK_X = deg(f^*K_Y) + deg(R)$$

 $2g(X) - 2 = n(2g(Y) - 2) + deg(R)$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Elliptic Curves

Chris Dare, Stephen Timmel

l - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シ۹ペ

- So far, we have largely avoided discussing elliptic curves
- The general theorems we have proved can be applied to demonstrate some interesting properties of elliptic curves
- We conclude by showing that the family of elliptic curves over \mathbb{P}^n is indexed by k

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

The j-invariant

- The canonical parameterization $\phi: P^1 \to K$ onto an elliptic curve has ramified points where the curve has branch points.
- Given a branch point P_0 , consider the divisor $2P_0$.
- The linear system of equivalent divisors has dimension 1 by Riemann-Roch (alternate form), so it induces a map f : X → P¹ with degree 2.
- Applying Riemann-Hurwitz to the map *f* gives four ramified points.

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

The j-invariant

- We change coordinates to fix $f(P^1) = \infty$.
- If the other two points are a, b we apply the following transformation, which fixes ∞ and sends a, b to 0, 1

$$x' = \frac{x - a}{b - a}$$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The j-invariant

- We now have an elliptic curve with branch points $0,1,\infty,\lambda$ for some λ
- Define a function on λ

$$j(\lambda)=2^8rac{(\lambda^2-\lambda+1)^3}{\lambda^2(\lambda-1)^2}$$

• The 2⁸ is a convenience that produces non-singular values over characteristic 2, and the remaining terms are chosen so *j* is an invariant, unique property of the curve *K*

Elliptic Curves

Chris Dare, Stephen Timme

I - Canonical Bundle

Characterization of Elliptic Curve

Riemann-Roch

Rieman-Hurwitz V - Properties of Elliptic Curves

Claim

- 1. The value j does not depend on the choice of λ for a given curve ${\it K}$
- 2. The value j is unique to a curve K (two curves are isomorphic iff they have the same j)
- 3. The family of elliptic curves covers all possible j

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle ..

Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

Proof Idea

1. Consider two morphisms f_1, f_2 . By diagram chasing, we can find automorphisms τ_1, τ_2 so that f_1 and $\tau_2^{-1} f_2 \tau_1$ send the same branch point to infinity.

To check permutations of the other three branch points, we can permute $0, 1, \lambda$ by σ and find a map ϕ to transform $\sigma 0, \sigma 1$ back to 0, 1. The values $\phi(\sigma(\lambda))$ are generated by the actions

$$\lambda
ightarrow 1/\lambda \qquad \lambda
ightarrow 1-\lambda$$

so we check that j preserves these actions

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of <u>E</u>lliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

3 Given a $j' \in K$, we can solve the original equation to find a value of λ with $j(\lambda) = j'$. The equation $y^2 = x(x-1)(x-\lambda)$ is an elliptic curve with $j(\lambda) = j'$

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

2 We proceed by proving an important lemma that will render the original assertion trivial.

Lemma: Fix a branch point P_0 . There is a closed immersion $\mathcal{K} \to \mathbb{P}^2$ whose image is

$$y^2 = x(x-1)(x-\lambda)$$

This map sends P_0 to infinity, and this λ is the same as before up to the transformation $\phi \circ \sigma$ described earlier.

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz
V - Properties of Elliptic Curves Proof of Lemma

- We start by generating a map from the closed immersion sending the set of divisors equivalent to $3P_0$ to P^2 (this has dimension 2 by Riemann-Roch)
- We also know by the alternate form of Riemann-Roch that $dimH^0(\mathcal{O}(nP^0)) = n$ (taking nP^0 as a divisor).
- Considering the inclusion

$$H^0(\mathcal{O}(2P_0)) \subset H^0(\mathcal{O}(3P_0) \subset H^0(\mathcal{O}(6P_0))$$

we can choose x, y so 1, x is a basis for $H^0(\mathcal{O}(2P_0))$ and 1, x, y is a basis for $H^0(\mathcal{O}(3P_0))$

Elliptic Curves

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

- The monomials that can show up in an elliptic curve are $1, x, y, x^2, xy, x^3, y^2$ and are all contained in $H^0(\mathcal{O}(6P_0))$, so they cannot be linearly independent
- Our monomials only describe an elliptic curve when x^3, y^2 both appear with nonzero coefficient, and we can scale the coordinate system so both have coefficient 1.
- Writing down an arbitrary linear dependence and completing the square gives

$$y^2 = (x-a)(x-b)(x-c)$$

Elliptic Curves

Chris Dare, Stephen Timmel

l - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

V - Properties of Elliptic Curves

• We can apply the same linear transformation used to derive *j* to send *a*, *b* to 0, 1. This gives the final result

$$y^2 = x(x-1)(x-\lambda)$$

- Both curves have a pole at P_0 by construction, which is sent to ∞ .
- Projecting from P_0 to the x-axis gives a morphism sending P_0 to infinity and ramified at the points $0, 1, \lambda, \infty$, so λ is one of the branch points in our other derivation.

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization of Elliptic Curve

Riemann-Roch

IV -Rieman-Hurwitz

V - Properties of Elliptic Curves

Using the Lemma Finishing our proof of (2):

- j is a rational function of degree 6 which induces a map $\lambda \to j$ of degree 6.
- This covering is Galois because the functional spaces have automorphism group S_3 .
 - We already noted that specific elements of the automorphism group correspond to permutations of the finite branch points.
- Therefore, $j(\lambda) = j(\lambda')$ iff λ, λ' are related by an automorphism and the proof is complete.

Chris Dare, Stephen Timmel

I - Canonical Bundle II -Characterization

of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz

David Eisenbud and Joe Harris.
3264 & All That Intersection Theory in Algebraic Geometry.
Cambridge: Cambridge University Press, 2016.

- Andreas Gathmann. Algebraic Geometry. University of Kaiserslautern, 2002.
- Robin Hartshorne.

Algebraic Geometry. Springer-Verlag New York, 1977.

Daniel Perrin. *Algebraic geometry: an introduction*. Springer Science & Business Media, 2007. Elliptic Curves

Chris Dare, Stephen Timmel

l - Canonical Bundle

II -Characterization of Elliptic Curve

III -Riemann-Roch

IV -Rieman-Hurwitz