Elliptic Curves

II -
Characterization of Elliptic Curve III
Riemann-Roch

Chris Dare, Stephen Timmel

Virginia Polytechnic Institute and State University

$$
\text { July 20, } 2019
$$

Sections

I - Canonical Bundle
IV - Rieman-Hurwitz
V - Properties of Elliptic Curves

Chris Dare,
Stephen Timmel

I - Canonical
Bundle

I - Canonical Bundle

II -
Characterization of Elliptic Curve

III -
Riemann-Roch
IV
Rieman-Hurwitz
V - Properties of Elliptic Curves

I - Canonical Bundle

Module of Rel. Differentials
Let $f: \operatorname{Spec} R \rightarrow \operatorname{Spec} S$ be a morphism of affine schemes and define the R-module $\Omega_{R / S}$ to be the free R-module generated by $\{d r: r \in R\}$ modulo the relations
(i) $d\left(r_{1}+r_{2}\right)=d r_{1}+d r_{2}$ for $r_{1}, r_{2} \in R$
(ii) (Leibniz Rule) $d\left(r_{1} r_{2}\right)=r_{1} d r_{2}+d r_{1} r_{2}$ for $r_{1}, r_{2} \in R$
(iii) $d s=0$ for all $s \in S$

I - Canonical Bundle

More generally:
Sheaf of Rel. Differentials
Let $f: X \rightarrow Y$ be a morphism of schemes. Let
$\Delta: X \rightarrow X \times_{Y} X$ be the diagonal morphism and \mathcal{I} its ideal sheaf. Then the Sheaf of Relative Differentials is the sheaf $\Omega_{X / Y}=\Delta^{*}\left(\mathcal{I} / \mathcal{I}^{2}\right)$

Note: The Module of Relative Differentials and Sheaf of Relative Differentials are the same on affine open sets.

I - Canonical Bundle

Let X be a smooth n-dimensional scheme, and suppose X is

Characterization of Elliptic Curve III -
Riemann-Roch IV -
Rieman-Hurwitz

I - Canonical Bundle

Lemma

Let $X=Z(f)$ be a smooth hyper-surface of degree d in \mathbb{P}^{n}.
Then the cotangent bundle Ω_{X} is determined by the short exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(-d) \rightarrow i^{*} \Omega_{\mathbb{P}^{n} / k} \xrightarrow{i^{*}} \Omega_{X / k} \rightarrow 0
$$

The tangent bundle \mathcal{T}_{X} is determined by the short exact sequence

$$
0 \rightarrow \mathcal{T}_{X} \rightarrow i^{*} \mathcal{T}_{\mathbb{P}^{n}} \rightarrow \mathcal{O}_{X}(d) \rightarrow 0
$$

I - Canonical Bundle

Idea of Proof

- The first map is given by $\phi \mapsto d(f \phi)$. If $d(f \phi)=0$ then $f d \phi=\phi d f \Rightarrow f$ is a factor of $\phi \Rightarrow \phi \equiv 0$ on $\mathcal{O}_{x}(-d)$. i^{*} is known to be surj. by previous examples. Since $f=0$ on X we know $\operatorname{ker}($ first map $)=i m i^{*}$.

I - Canonical Bundle

Idea of Proof

- The first map is given by $\phi \mapsto d(f \phi)$. If $d(f \phi)=0$ then $f d \phi=\phi d f \Rightarrow f$ is a factor of $\phi \Rightarrow \phi \equiv 0$ on $\mathcal{O}_{x}(-d)$. i^{*} is known to be surj. by previous examples. Since $f=0$ on X we know $\operatorname{ker}($ first map $)=i m i^{*}$.
- Taking duals gives second short exact sequence.

I - Canonical Bundle

Recall the following lemma from [2]:
Characterization

Lemma
III
Riemann-Roch
Let X be a smooth curve. Then there is an isomorphism of Abelian groups
$\{$ Line bundles \mathcal{L} on $X\} \leftrightarrow \operatorname{Pic} X$

I - Canonical Bundle

Using previous lemma

- One commonly refers to K_{X} as the canonical divisor of ω_{X}, mapped to under this isomorphism

I - Canonical Bundle

Using previous lemma

- One commonly refers to K_{X} as the canonical divisor of ω_{X}, mapped to under this isomorphism
- We define the geometric genus p_{g} to be $\operatorname{dim}_{k} \Gamma\left(X, \omega_{X}\right)$

I - Canonical Bundle

Normal Bundle

Let $Y \subset X$ be an irreducible closed subscheme defined by sheaf of ideals \mathcal{I}. If Y is non-singular, $\mathcal{I} / \mathcal{I}^{2}$ is locally free and we refer to

$$
\mathcal{N}_{Y / X}=\left(\mathcal{I} / \mathcal{I}^{2}\right)^{\vee}=\operatorname{Hom}_{\mathcal{O}_{Y}}\left(\mathcal{I} / \mathcal{I}^{2}, \mathcal{O}_{Y}\right)
$$

as the Normal Bundle [3]

I－Canonical Bundle

Adjunction Formula

There is an exact sequence

$$
0 \rightarrow \mathcal{I} / \mathcal{I}^{2} \xrightarrow{\delta} \Omega_{X / k} \otimes \mathcal{O}_{Y} \rightarrow \Omega_{Y / k} \rightarrow 0
$$

where δ sends germ of function to germ of differential． By taking dual，

$$
0 \rightarrow \mathcal{T}_{Y} \rightarrow \mathcal{T}_{X} \otimes \mathcal{O}_{Y} \rightarrow \mathcal{N}_{Y / X} \rightarrow 0
$$

I - Canonical Bundle

Adjunction Formula

Taking top dimensional powers,

$$
\bigwedge^{n} \mathcal{T}_{X} \otimes \mathcal{O}_{Y} \simeq \bigwedge^{n} \mathcal{T}_{Y} \otimes \mathcal{N}_{Y / X}
$$

But dual commutes with exterior powers, so

$$
\begin{equation*}
\bigwedge^{n} \mathcal{T}_{Y} \simeq \bigwedge^{n} \mathcal{T}_{X} \otimes \mathcal{O}_{Y} \otimes \mathcal{I} / \mathcal{I}^{2} \tag{1}
\end{equation*}
$$

I - Canonical Bundle

Adjunction Formula
If \mathcal{L} is invertible sheaf on X then $\mathcal{I}_{Y} \simeq \mathcal{L}^{-1}$ so

$$
\mathcal{I} / \mathcal{I}^{2} \simeq \mathcal{L}^{-1} \otimes \mathcal{O}_{Y} \Rightarrow \mathcal{N}_{Y / X} \simeq \mathcal{L} \otimes \mathcal{O}_{Y}
$$

Taking duals in (1) gives adjunction formula

$$
\omega_{Y} \simeq \omega_{X} \otimes \mathcal{N}_{Y / X}
$$

I - Canonical Bundle

From 3264 [1]:
Corollary
If $Y \subset X$ is a non-singular curve in a complete surface X then

$$
\operatorname{deg} K_{Y}=\operatorname{deg}\left(\left(K_{X}+[Y]\right)[Y]\right)
$$

I - Canonical Bundle

Example

- Take $X=\mathbb{P}^{n}$ and $U_{i}=\left\{x_{i} \neq 0\right\}$. If X_{0}, \ldots, X_{n} coordinates for $\mathbb{P}^{n}, x_{k}=\frac{X_{k}}{X_{i}}$ on $U_{i}($ for $k \neq i)$, then top dimensional form $\left.\omega\right|_{U_{i}}$ is

$$
\left.\omega\right|_{u_{i}}=d x_{0} \wedge \cdots \wedge d x_{n}
$$

I - Canonical Bundle

Example

- Take $X=\mathbb{P}^{n}$ and $U_{i}=\left\{x_{i} \neq 0\right\}$. If X_{0}, \ldots, X_{n} coordinates for $\mathbb{P}^{n}, x_{k}=\frac{X_{k}}{X_{i}}$ on $U_{i}($ for $k \neq i)$, then top dimensional form $\left.\omega\right|_{u_{i}}$ is

$$
\omega \mid u_{i}=d x_{0} \wedge \cdots \wedge d x_{n}
$$

- If $y_{k}=\frac{X_{k}}{X_{j}}$ on U_{j}, we have transition functions

$$
g_{i, j}\left(x_{k}\right)= \begin{cases}y_{k} / y_{i} & k \neq j \\ 1 / y_{i} & k \neq j\end{cases}
$$

I - Canonical Bundle
 Example

- Gives differential

$$
d g_{i, j}\left(x_{k}\right)= \begin{cases}\frac{1}{y_{i}} d y_{k}-\frac{y_{k}}{y_{i}} d y_{i} & k \neq j \\ \frac{-1}{y_{i}^{2}} d y_{i} & k=j\end{cases}
$$

I－Canonical Bundle

Example

－Gives differential

$$
d g_{i, j}\left(x_{k}\right)= \begin{cases}\frac{1}{y_{i}} d y_{k}-\frac{y_{k}}{y_{i}^{2}} d y_{i} & k \neq j \\ \frac{-1}{y_{i}^{2}} d y_{i} & k=j\end{cases}
$$

III
Riemann－Roch

IV－

Rieman－Hurwitz
－Properties of Elliptic Curves
－Gives pushforward

$$
\begin{aligned}
g^{*}\left(\left.\omega\right|_{U_{i}}\right) & =g^{*}\left(d x_{1} \wedge \cdots \wedge d x_{n}\right) \\
& =\frac{(-1)^{n}}{y_{i}^{n+1}} d y_{1} \wedge \cdots \wedge d y_{n}
\end{aligned}
$$

I－Canonical Bundle

Example

－If $H=Z\left(X_{i}\right) \subset X=\mathbb{P}^{n}$ is any hyperplane，we have

$$
\operatorname{Div}(\omega)=(-n-1) H
$$

and

$$
K_{\mathbb{P}^{n}}=(-n-1) \zeta
$$

where $\zeta \in A^{1}\left(\mathbb{P}^{n}\right)$ is class of hyperplane，and lastly

$$
\omega_{\mathbb{P}^{n}} \simeq \mathcal{O}_{\mathbb{P}^{n}}(-n-1)
$$

I - Canonical Bundle

Alternatively: [3]

- For $X=\mathbb{P}^{n}$ and $Y=\operatorname{Spec} A$, Euler's exact sequence is

$$
0 \rightarrow \Omega_{X / Y} \rightarrow \mathcal{O}_{X}(-1)^{\oplus n+1} \rightarrow \mathcal{O}_{X} \rightarrow 0
$$

I-Canonical
Bundle

Characterization of Elliptic Curve

III
Riemann-Roch

IV

Rieman-Hurwitz

- Properties of Elliptic Curves

I－Canonical Bundle

Alternatively：［3］

－For $X=\mathbb{P}^{n}$ and $Y=\operatorname{Spec} A$ ，Euler＇s exact sequence is

$$
0 \rightarrow \Omega_{X / Y} \rightarrow \mathcal{O}_{X}(-1)^{\oplus n+1} \rightarrow \mathcal{O}_{X} \rightarrow 0
$$

I－Canonical

Bundle
II－
Characterization of Elliptic Curve III
Riemann－Roch
IV－
Rieman－Hurwitz
Properties of Elliptic Curves
－Taking dual gives us

$$
0 \rightarrow \mathcal{O}_{x} \rightarrow \mathcal{O}_{X}(1)^{\oplus n+1} \rightarrow \mathcal{T}_{X} \rightarrow 0
$$

since $\omega_{X}=\bigwedge^{n+1} \Omega_{X / Y}$ ，we take $n+1$ exterior product of first sequence to give us isomorphism $\omega_{\mathbb{P}^{n}} \simeq \mathcal{O}_{\mathbb{P}^{n}}(-n-1)$

Characterization of Elliptic Curve

II - Characterization of Elliptic Curve

II - Characterization of Elliptic Curve

Definition (Elliptic Curve)

A curve over a field k is an integral scheme C of finite type with $\operatorname{dim} C=1$. We say that C is an elliptic curve if $\operatorname{deg} C=3$.

- In particular, we consider elliptic plane curves $C \subset \mathbb{P}^{2}$

II - Characterization of Elliptic Curve

Canonical Bundle of Elliptic Curve

- Adjunction Formula: for a non-singular irreducible closed subscheme $Y \subset X$ of codimension 1, have

$$
\left.\omega_{Y} \simeq \omega_{X} \otimes \mathcal{N}_{Y / X} \simeq \omega_{X} \otimes \mathcal{O}_{X}(Y)\right|_{Y}
$$

II - Characterization of Elliptic Curve

Canonical Bundle of Elliptic Curve

- Adjunction Formula: for a non-singular irreducible closed subscheme $Y \subset X$ of codimension 1, have

$$
\left.\omega_{Y} \simeq \omega_{X} \otimes \mathcal{N}_{Y / X} \simeq \omega_{X} \otimes \mathcal{O}_{X}(Y)\right|_{Y}
$$

- [3] When $X=\mathbb{P}^{n}(n \geq 2)$ and Y is non-singular hypersurface of degree d,

$$
\left.\omega_{Y} \simeq \omega_{\mathbb{P} n}(Y)\right|_{Y}=\mathcal{O}_{Y}(d-n-1)
$$

II－Characterization of Elliptic Curve

Canonical Bundle of Elliptic Curve
Since any elliptic plane curve $C \subset \mathbb{P}^{2}$ has $d=\operatorname{deg} C=3$ then

$$
\omega_{C} \simeq \mathcal{O}_{C}
$$

and

$$
p_{g}(C)=\operatorname{dim} \Gamma\left(C, \omega_{C}\right)=\operatorname{dim} \Gamma\left(C, \mathcal{O}_{C}\right)=1
$$

II - Characterization of Elliptic Curve

Application to Physics

- A separated, smooth scheme X of finite type is said to be Calabi-Yau if

$$
c_{1}\left(\mathcal{T}_{X}\right)=0 \Leftrightarrow \omega_{X} \simeq \mathcal{O}_{X}
$$

II - Characterization of Elliptic Curve

Application to Physics

- A separated, smooth scheme X of finite type is said to be Calabi-Yau if

$$
c_{1}\left(\mathcal{T}_{X}\right)=0 \Leftrightarrow \omega_{X} \simeq \mathcal{O}_{X}
$$

- The only complex Calabi-Yau 1-folds are elliptic curves

II - Characterization of Elliptic Curve

First Chern Class of Curve
Let $X \subset \mathbb{P}^{2}$ be a curve and $\mathcal{E}=\mathcal{L}(D)$ be the invertible sheaf associated to some divisor D

- By definition we have

$$
\Omega_{X / k}=\mathcal{L}\left(K_{X}\right) \Rightarrow \mathcal{T}_{X}=\Omega_{X / k}^{\vee}=\mathcal{L}\left(-K_{X}\right)
$$

II－Characterization of Elliptic Curve

First Chern Class of Curve
Let $X \subset \mathbb{P}^{2}$ be a curve and $\mathcal{E}=\mathcal{L}(D)$ be the invertible sheaf associated to some divisor D
－By definition we have

$$
\Omega_{X / k}=\mathcal{L}\left(K_{X}\right) \Rightarrow \mathcal{T}_{X}=\Omega_{X / k}^{\vee}=\mathcal{L}\left(-K_{X}\right)
$$

－Recall $c_{1}\left(\mathcal{E}^{\vee}\right)=-c_{1}(\mathcal{E})$ for locally free sheaf \mathcal{E}

II - Characterization of Elliptic Curve

First Chern Class of Curve
Let $X \subset \mathbb{P}^{2}$ be a curve and $\mathcal{E}=\mathcal{L}(D)$ be the invertible sheaf associated to some divisor D

- By definition we have

$$
\Omega_{X / k}=\mathcal{L}\left(K_{X}\right) \Rightarrow \mathcal{T}_{X}=\Omega_{X / k}^{\vee}=\mathcal{L}\left(-K_{X}\right)
$$

- Recall $c_{1}\left(\mathcal{E}^{\vee}\right)=-c_{1}(\mathcal{E})$ for locally free sheaf \mathcal{E}
- Since $\operatorname{dim} X=1$, have $\Omega_{X / k}=\omega_{x}$

II - Characterization of Elliptic Curve

First Chern Class of Curve
Then

$$
c_{1}\left(\mathcal{T}_{X}\right)=c_{1}\left(\mathcal{L}\left(-K_{X}\right)\right)=-c_{1}\left(\mathcal{L}\left(K_{X}\right)\right)=-c_{1}\left(\omega_{X}\right)=-K_{X}
$$

Chris Dare,

 Stephen TimmelBundle
II -
Characterization of Elliptic Curve

Riemann-Roch
From above (and [1]) we know that

IV -
Rieman-Hurwitz
Properties of Elliptic Curves

$$
K_{X}=(d-n-1) \zeta
$$

where $\zeta=c_{1}\left(\mathcal{O}_{X}(1)\right) \in A^{1}(X)$ class of hyperplane section. Then

$$
c_{1}\left(\mathcal{T}_{x}\right)=(n+1-d) \zeta
$$

Chris Dare,
Stephen Timmel

I-Canonical
Bundle
II -
Characterization
of Elliptic Curve
III -
Riemann-Roch

III - Riemann-Roch

Rieman-Hurwitz
V - Properties of Elliptic Curves

III - Riemann-Roch

- So far, we have characterized elliptic curves as the simplest members of the broader space of Calibi-Yau schemes.
- There are more specific things we can say about elliptic curves, but we will need to rely heavily on the Riemann-Roch Theorem to prove anything useful (also

Characterization of Elliptic Curve III -
Riemann-Roch

Rieman-Hurwitz Riemann-Hurwitz).

- Notation in this section will blend Perrin [4], Gathmann [2] and Hartshorne [3]

III－Riemann－Roch

Sheaf Cohomology

As described in［4］，taking global sections of the exact sequence of \mathcal{O}_{X}－modules

$$
0 \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow \mathcal{H} \rightarrow 0
$$

yields an exact sequence

I－Canonical
Bundle
II－
Characterization of Elliptic Curve III－
Riemann－Roch

Rieman－Hurwitz
Properties of Elliptic Curves

$$
0 \rightarrow \Gamma(X, \mathcal{F}) \rightarrow \Gamma(X, \mathcal{G}) \xrightarrow{\pi} \Gamma(X, \mathcal{H})
$$

where π need not be a surjection．

III－Riemann－Roch

Čech complexes

－Given a sheaf \mathcal{F} on the scheme X and fixed open cover $\left\{U_{i}\right\}$ ，define an abelian group

$$
C^{P}(\mathcal{F})=\prod_{i_{0}<\ldots<i_{p}} \mathcal{F}\left(U_{i_{0}} \cap U_{i_{1}} \cap \ldots \cap U_{i_{p}}\right)
$$

I－Canonical
Bundle
II－
Characterization of Elliptic Curve
where $\alpha \in C^{p}$ is a collection of independent sections $\alpha_{i_{0}, \ldots, i_{p}}$ of \mathcal{F} ．

III - Riemann-Roch

Čech complexes

- Define a boundary operator $d^{p}: C^{p} \rightarrow C^{p+1}$ composed of the sections

Characterization of Elliptic Curve III -
Riemann-Roch

$$
\left(d^{p} \alpha\right)_{i_{0}, i_{1}, \ldots, i_{p+1}}=\left.\sum_{k=0}^{p+1}(-1)^{k} \alpha_{i_{0}, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{p+1}}\right|_{U_{i_{1}} \cap U_{i_{2}} \cap \ldots \cap U_{i_{p+1}}}
$$

- The $(-1)^{k}$ term guarantees that $d^{p+1} \circ d^{p}=0$, so we know $\operatorname{ker}\left(d^{p+1}\right) \subset \operatorname{im}\left(d^{p}\right)$
- In general, this inclusion is strict, so no exact sequence yet.

III - Riemann-Roch
 Čech complexes

- We can force the d^{p} to form an exact sequence by taking a quotient
- Defining $H^{p}(X, \mathcal{F})=\operatorname{ker}\left(d^{p}\right) / \operatorname{im}\left(d^{p-1}\right)$ and defining the degenerate cases $p<0$ using $C^{p}=0$ and $d^{p}=0$, we get $H^{0}(X, \mathcal{F})=\Gamma(\mathcal{F})$ and the exact sequence
(proved by diagram chasing)
- This embeds the exact sequence we wanted in an infinite sequence of unknown terms.

III - Riemann-Roch

Additional Remarks

- This construction gives the same result independent of open cover
- Proof idea from §8.5 of [2]
- First show that affine schemes satisfy $H^{i}(X, \mathcal{F})=0$ for $i>0$

Rieman-Hurwitz

- Properties of Elliptic Curves

III－Riemann－Roch

Additional Remarks

I－Canonical
Bundle
II－
Characterization of Elliptic Curve III－
Riemann－Roch

Rieman－Hurwitz
－First show that affine schemes satisfy $H^{i}(X, \mathcal{F})=0$ for $i>0$
－The restriction map from $\tilde{H}^{p}(X, F)$ defined on the open cover $\left\{U_{0}, U_{1}, \ldots, U_{n}\right\}$ to $H^{p}(X, F)$ defined on the open cover $\left\{U_{1}, U_{2}, \ldots, U_{n}\right\}$ is an isomorphism

III - Riemann-Roch

Additional Remarks

I-Canonical Bundle

II -
Characterization of Elliptic Curve

Riemann-Roch

- First show that affine schemes satisfy $H^{i}(X, \mathcal{F})=0$ for $i>0$
- The restriction map from $\tilde{H}^{p}(X, F)$ defined on the open cover $\left\{U_{0}, U_{1}, \ldots, U_{n}\right\}$ to $H^{p}(X, F)$ defined on the open cover $\left\{U_{1}, U_{2}, \ldots, U_{n}\right\}$ is an isomorphism
- By repeated application of the above, we can add and remove any number of open sets from the cover.

V - Properties of Elliptic Curves

III - Riemann-Roch

Motivation

- Since curves have dimension 1, we know that $\operatorname{dim}_{k} H^{i}(X, \mathcal{F})=0$ for $i>1[4]$
- To use our long exact sequence, we need some knowledge of $\operatorname{dim}_{k} H^{1}(X, \mathcal{F})$

I-Canonical Bundle

Characterization of Elliptic Curve III -
Riemann-Roch

Rieman-Hurwitz

- Riemann-Roch will help us evaluate the difference $\operatorname{dim}_{k} H^{0}(X, \mathcal{F})-\operatorname{dim}_{k} H^{1}(X, \mathcal{F})$
- We will need some additional knowledge of $\operatorname{dim}_{k} H^{1}(X, \mathcal{F})$ when we apply the formula [2]

III - Riemann-Roch

The Riemann-Roch Theorem
If C is an irreducible projective curve of degree d and genus g, we have for all n the relation of graded components

$$
\operatorname{dim}_{k} H^{0}\left(C, \mathcal{O}_{C}(n)\right)-\operatorname{dim}_{k} H^{1}\left(C, \mathcal{O}_{C}(n)\right)=n d+1-g
$$

III - Riemann-Roch

Proof (mostly from [4] VIII.1.5)

- Let $A=k\left[X_{0}, \ldots, X_{n}\right] / I(C)$ and note that A has associated sheaf \mathcal{O}_{C}
- Let H be some hyperplane not containing C, and suppose the equation of H corresponds to $h \in A$
- Defining ϕ to be multiplication by h, we get the exact sequence

$$
0 \rightarrow A(-1) \xrightarrow{\phi} A \rightarrow A /(h) \rightarrow 0
$$

III－Riemann－Roch

－Mapping this sequence to sheaves and shifting by n ，we get

$$
0 \rightarrow \mathcal{O}_{C}(n-1) \xrightarrow{\phi} \mathcal{O}_{C}(n) \rightarrow \mathcal{O}_{\mathrm{C} \cap H}(n) \rightarrow 0
$$

I－Canonical Bundle

Characterization of Elliptic Curve III－
Riemann－Roch
IV－
Rieman－Hurwitz

$$
\chi\left(\mathcal{O}_{C}(n)\right)=\operatorname{dim}_{k} H^{0}\left(C, \mathcal{O}_{C}(n)\right)-\operatorname{dim}_{k} H^{1}\left(C, \mathcal{O}_{C}(n)\right)
$$

our exact sequence gives us the relation

$$
\chi\left(\mathcal{O}_{C}(n)\right)=\chi\left(\mathcal{O}_{C}(n-1)\right)+\chi\left(\mathcal{O}_{C \cap H}(n)\right)
$$

III - Riemann-Roch

- Since C has dimension 1 , the intersection $C \cap H$ has dimension 0 and consists of finitely many points

I-Canonical
Bundle
II -
Characterization
of Elliptic Curve

- Simplifying and using induction, we get

$$
\begin{gathered}
\chi\left(\mathcal{O}_{C}(n)\right)=\chi\left(\mathcal{O}_{C}(n-1)\right)+d \\
\chi\left(\mathcal{O}_{C}(n)\right)=\chi\left(\mathcal{O}_{C}\right)+n d
\end{gathered}
$$

III－Riemann－Roch

－This leaves the expansion of $\chi\left(\mathcal{O}_{C}\right)$ ．
－We have the identity

Characterization of Elliptic Curve III－
Riemann－Roch
since the only functions over all of \mathcal{O}_{C} are constant．
－Therefore， $\operatorname{dim}_{k} H^{0}\left(C, \mathcal{O}_{C}\right)=1$ ．

III－Riemann－Roch

－The last term $\operatorname{dim}_{k} H^{1}\left(C, \mathcal{O}_{C}\right)$ is sometimes used as an alternate definition of the arithmetic genus
－We are used to the arithmetic genus being the constant
I－Canonical
Bundle
II－
Characterization
of Elliptic Curve
－To relate these two forms，we start with another form of the Hilbert polynomial $P(n)$ given in［3］

$$
P(n)=\chi(\mathcal{F}(n))=\sum_{i}(-1)^{i} \operatorname{dim}_{k} H^{i}(X, \mathcal{F}(n))
$$

III - Riemann-Roch

- The constant term of this expression can be calculated as

$$
g=\sum_{i=0}^{r-1}(-1)^{i} \operatorname{dim}_{k} H^{r-i}\left(C, \mathcal{O}_{C}\right)
$$

I-Canonical
Bundle
II -
Characterization
of Elliptic Curve

Riemann-Roch
IV -
Rieman-Hurwitz

- In dimension 1, this simplifies to $g=H^{1}\left(C, \mathcal{O}_{X}\right)$
- Combining the terms we have already described, we get

$$
\operatorname{dim}_{k} H^{0}\left(C, \mathcal{O}_{C}(n)\right)-\operatorname{dim}_{k} H^{1}\left(C, \mathcal{O}_{C}(n)\right)=n d+1-g
$$

III－Riemann－Roch

Related Theorems

There are a number of equivalent statements that are commonly associated to Riemann－Roch（most easily proved using Serre duality）

I－Canonical
Bundle
II－
Characterization
of Elliptic Curve
III－
Riemann－Roch
IV－
Rieman－Hurwitz
Properties of Elliptic Curves
－（Riemann）For large n ，we have

$$
\operatorname{dim}_{k}\left(C, \mathcal{O}_{C}(n)=n d+1-g\right.
$$

Characterization of Elliptic Curve

Riemann-Roch
IV -
Rieman-Hurwitz
V - Properties of Elliptic Curves

IV - Rieman-Hurwitz

Motivation

- So far, we have developed tools for understanding the dimension of global sections over sheaves
- Riemann-Hurwitz gives a similar set of tools for individual points through the ramification divisor.

IV - Rieman-Hurwitz

Ramification

- Recall that for smooth curves the Picard group of divisors is isomorphic to the set of line bundles Pic'

I - Canonical Bundle

II -
Characterization of Elliptic Curve

- Given a smooth map $f: X \rightarrow Y$ we can define a pullback map on divisors by pulling back the associated line bundles
- Given a point P, we can treat its image $f(P)$ as a divisor. This lets us compute the subscheme $f^{-1}(f(P))$
- The dimension of this subscheme is the ramification index e_{P} at P.

IV - Rieman-Hurwitz

- A point is unramified if its index is 1 , and ramified otherwise.
- We will assume a field of characteristic 0 in this section

IV - Rieman-Hurwitz

Ramification Divisor

- Define $\Omega_{X / Y}$ as before
- The Ramification Divisor is defined to be

$$
R=\sum_{P \in X} \operatorname{len}\left(\Omega_{X / Y}\right)_{P} \cdot P
$$

I-Canonical
Bundle
II -
Characterization
of Elliptic Curve
III
Riemann-Roch
IV -
Rieman-Hurwitz

- Properties of Elliptic Curves
- We will demonstrate that this formal sum contains ramified points counted with their ramification.

IV－Rieman－Hurwitz

Riemann－Hurwitz
（Riemann－Hurwitz）Let $f: X \rightarrow Y$ be a finite separable morphism of curves and $n=\operatorname{degf}$ ．Then

$$
2 g(X)-2=n \cdot(2 g(Y)-2)+\operatorname{deg} R
$$

Additionally， $\operatorname{deg} R$ satisfies

$$
\operatorname{deg} R=\sum_{P \in X}\left(e_{P}-1\right)
$$

IV - Rieman-Hurwitz

Proof idea

- The following sequence is exact

Characterization of Elliptic Curve III
Riemann-Roch

$$
0 \rightarrow f^{*} \Omega_{Y} \rightarrow \Omega_{X} \rightarrow \Omega_{X / Y} \rightarrow 0
$$

- From this sequence, $\Omega_{X / Y}$ is supported on the ramification points of f.

IV - Rieman-Hurwitz

If f has ramification index e at P we substitute $t=a u^{e}$ for unit
a and differentiate

$$
d t=a e u^{e-1} d u+u^{e} d a
$$

Finding the highest power with nonzero coefficient gives

Characterization of Elliptic Curve III
Riemann-Roch

Rieman-Hurwitz

- Properties of Elliptic Curves

$$
\operatorname{length}\left(\Omega_{X / Y}\right)_{P}=e-1
$$

Note: We just proved the second part of the theorem

IV - Rieman-Hurwitz

- Let K_{X}, K_{Y} be canonical divisors. Using the same kind of local calculation as before, we can show (as in [2]) that

$$
K_{X}=f^{*} K_{Y}+R
$$

IV - Rieman-Hurwitz

- To convert this equation into the first part of the theorem, note by Riemann-Roch that the canonical divisor has degree $2 g-2$ (substitute $D=K$ into the alternate form)

$$
\operatorname{dim}_{k} H^{0}(K)-\operatorname{dim}_{k} H^{0}(K-K)=\operatorname{deg}(K)+1-g
$$

I-Canonical
Bundle
II -
Characterization
of Elliptic Curve

- Noting that f^{*} multiplies degrees by $n=\operatorname{deg}(f)$, we expand

$$
\begin{gathered}
\operatorname{deg} K_{X}=\operatorname{deg}\left(f^{*} K_{Y}\right)+\operatorname{deg}(R) \\
2 g(X)-2=n(2 g(Y)-2)+\operatorname{deg}(R)
\end{gathered}
$$

Characterization of Elliptic Curve

IV -

Rieman-Hurwitz
V - Properties of Elliptic Curves

V - Properties of Elliptic Curves

- So far, we have largely avoided discussing elliptic curves
- The general theorems we have proved can be applied to demonstrate some interesting properties of elliptic curves
- We conclude by showing that the family of elliptic curves over \mathbb{P}^{n} is indexed by k

V - Properties of Elliptic Curves

The j-invariant

- The canonical parameterization $\phi: P^{1} \rightarrow K$ onto an elliptic curve has ramified points where the curve has branch points.
- Given a branch point P_{0}, consider the divisor $2 P_{0}$.
- The linear system of equivalent divisors has dimension 1 by Riemann-Roch (alternate form), so it induces a map $f: X \rightarrow P^{1}$ with degree 2.
- Applying Riemann-Hurwitz to the map f gives four ramified points.

V－Properties of Elliptic Curves

The j－invariant
－We change coordinates to fix $f\left(P^{1}\right)=\infty$ ．
－If the other two points are a, b we apply the following transformation，which fixes ∞ and sends a, b to 0,1

$$
x^{\prime}=\frac{x-a}{b-a}
$$

V - Properties of Elliptic Curves

The j-invariant

- We now have an elliptic curve with branch points $0,1, \infty, \lambda$ for some λ
- Define a function on λ

$$
j(\lambda)=2^{8} \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}}
$$

- The 2^{8} is a convenience that produces non-singular values over characteristic 2 , and the remaining terms are chosen so j is an invariant, unique property of the curve K

V－Properties of Elliptic Curves

1．The value j does not depend on the choice of λ for a given curve K
2．The value j is unique to a curve K（two curves are isomorphic iff they have the same j ）
3．The family of elliptic curves covers all possible j

V - Properties of Elliptic Curves

Proof Idea

1. Consider two morphisms f_{1}, f_{2}. By diagram chasing, we can

Characterization of Elliptic Curve same branch point to infinity.
To check permutations of the other three branch points, we can permute $0,1, \lambda$ by σ and find a map ϕ to transform $\sigma 0, \sigma 1$ back to 0,1 . The values $\phi(\sigma(\lambda))$ are generated by the actions

$$
\lambda \rightarrow 1 / \lambda \quad \lambda \rightarrow 1-\lambda
$$

so we check that j preserves these actions

V - Properties of Elliptic Curves

3 Given a $j^{\prime} \in K$, we can solve the original equation to find a value of λ with $j(\lambda)=j^{\prime}$. The equation $y^{2}=x(x-1)(x-\lambda)$ is an elliptic curve with $j(\lambda)=j^{\prime}$

V - Properties of Elliptic Curves

2 We proceed by proving an important lemma that will render the original assertion trivial.

Lemma: Fix a branch point P_{0}. There is a closed immersion $K \rightarrow \mathbb{P}^{2}$ whose image is

$$
y^{2}=x(x-1)(x-\lambda)
$$

This map sends P_{0} to infinity, and this λ is the same as before up to the transformation $\phi \circ \sigma$ described earlier.

V - Properties of Elliptic Curves

Proof of Lemma

- We start by generating a map from the closed immersion sending the set of divisors equivalent to $3 P_{0}$ to P^{2} (this has dimension 2 by Riemann-Roch)
- We also know by the alternate form of Riemann-Roch that $\operatorname{dim} H^{0}\left(\mathcal{O}\left(n P^{0}\right)\right)=n\left(\right.$ taking $n P^{0}$ as a divisor).

Rieman-Hurwitz
V - Properties of Elliptic Curves

- Considering the inclusion

$$
H^{0}\left(\mathcal{O}\left(2 P_{0}\right)\right) \subset H^{0}\left(\mathcal { O } (3 P _ { 0 }) \subset H ^ { 0 } \left(\mathcal{O}\left(6 P_{0}\right)\right.\right.
$$

we can choose x, y so $1, x$ is a basis for $H^{0}\left(\mathcal{O}\left(2 P_{0}\right)\right)$ and $1, x, y$ is a basis for $H^{0}\left(\mathcal{O}\left(3 P_{0}\right)\right)$

V - Properties of Elliptic Curves

- The monomials that can show up in an elliptic curve are so they cannot be linearly independent
- Our monomials only describe an elliptic curve when x^{3}, y^{2} both appear with nonzero coefficient, and we can scale the coordinate system so both have coefficient 1.

Characterization
of Elliptic Curve

- Writing down an arbitrary linear dependence and completing the square gives

$$
y^{2}=(x-a)(x-b)(x-c)
$$

V－Properties of Elliptic Curves

－We can apply the same linear transformation used to derive j to send a, b to 0,1 ．This gives the final result

$$
y^{2}=x(x-1)(x-\lambda)
$$

－Both curves have a pole at P_{0} by construction，which is

I－Canonical
Bundle
II－
Characterization
of Elliptic Curve
III－
Riemann－Roch
IV－
Rieman－Hurwitz
V－Properties of Elliptic Curves sent to ∞ ．
－Projecting from P_{0} to the x－axis gives a morphism sending P_{0} to infinity and ramified at the points $0,1, \lambda, \infty$ ，so λ is one of the branch points in our other derivation．

V - Properties of Elliptic Curves

Using the Lemma

Finishing our proof of (2):

- j is a rational function of degree 6 which induces a map $\lambda \rightarrow j$ of degree 6 .
- This covering is Galois because the functional spaces have automorphism group S_{3}.
- We already noted that specific elements of the automorphism group correspond to permutations of the finite branch points.
- Therefore, $j(\lambda)=j\left(\lambda^{\prime}\right)$ iff $\lambda, \lambda^{\prime}$ are related by an automorphism and the proof is complete.
© David Eisenbud and Joe Harris．
3264 \＆All That Intersection Theory in Algebraic Geometry． Cambridge：Cambridge University Press， 2016.

固 Andreas Gathmann．

Characterization of Elliptic Curve III－
Riemann－Roch
IV－
Rieman－Hurwitz
V－Properties of Elliptic Curves

Algebraic Geometry．
Springer－Verlag New York， 1977.
國 Daniel Perrin．
Algebraic geometry：an introduction．
Springer Science \＆Business Media， 2007.

