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| - Canonical Bundle

Module of Rel. Differentials
Let f : Spec R — Spec S be a morphism of affine schemes and

define the R-module (2z/s to be the free R-module generated
by {dr : r € R} modulo the relations

(i) d(n+n)=dn +drnforrn,mneR
(i) (Leibniz Rule) d(rirn) = ndrn + dnr forn,n € R
(i) ds=0forallse S




| - Canonical Bundle

More generally:
Sheaf of Rel. Differentials

Let f : X — Y be a morphism of schemes. Let
A : X = X Xy X be the diagonal morphism and Z its ideal
sheaf. Then the Sheaf of Relative Differentials is the sheaf

Qx/y = A*(Z/1?)

Note: The Module of Relative Differentials and Sheaf of Relative
Differentials are the same on affine open sets.




| - Canonical Bundle

Tangent 4+ Canonical Bundle

Let X be a smooth n-dimensional scheme, and suppose X is
smooth (i.e. Qx/y is locally free of rank n). We define the
tangent bundle Tx = Q)qu and the canonical bundle

wx = /\n QX/k-




| - Canonical Bundle

Lemma
Let X = Z(f) be a smooth hyper-surface of degree d in P".

Then the cotangent bundle Q)x is determined by the short exact
sequence

0— Ox(—d) — I.*Q]Pm/k g QX/k — 0

The tangent bundle Tx is determined by the short exact

sequence
0— Tx — i"Tpn — Ox(d) — 0




| - Canonical Bundle

|dea of Proof

@ The first map is given by ¢ — d(f¢). If d(f¢) = 0 then
fd¢ = ¢df = f is a factor of = ¢ =0 on Ox(—d). i*
is known to be surj. by previous examples. Since f =0 on
X we know ker(first map) = imi*.




| - Canonical Bundle

|dea of Proof

@ The first map is given by ¢ — d(f¢). If d(f¢) = 0 then
fd¢ = ¢df = f is a factor of = ¢ =0 on Ox(—d). i*
is known to be surj. by previous examples. Since f =0 on
X we know ker(first map) = imi*.

e Taking duals gives second short exact sequence.




| - Canonical Bundle

Recall the following lemma from [2]:

Lemma
Let X be a smooth curve. Then there is an isomorphism of
Abelian groups

{Line bundles L on X} <> Pic X




| - Canonical Bundle

Using previous lemma

@ One commonly refers to Kx as the canonical divisor of
wy, mapped to under this isomorphism
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| - Canonical
Bundle

Using previous lemma

@ One commonly refers to Kx as the canonical divisor of
wy, mapped to under this isomorphism

o We define the geometric genus pg to be dim, (X, wx)




| - Canonical Bundle

Normal Bundle
Let Y C X be an irreducible closed subscheme defined by sheaf

of ideals Z. If Y is non-singular, Z/Z? is locally free and we
refer to

Ny x = (Z/T?)" = Homo, (Z/Z?,Oy)

as the Normal Bundle [3]




| - Canonical Bundle

Adjunction Formula
There is an exact sequence

O—)I/ZQ i)Q)(/k(gcgy —)Qy/k — 0

where ¢ sends germ of function to germ of differential.
By taking dual,

0—=Ty = Tx®0Oy = Nyx =0




| - Canonical Bundle

Adjunction Formula
Taking top dimensional powers,

A Tx @0y ~ \ Ty & Nyx

But dual commutes with exterior powers, so

ATy~ \Tx® 0y o1/1°




| - Canonical Bundle

Adjunction Formula
If £ is invertible sheaf on X then Zy ~ £~ so

I/Iz ~ L1 ® Oy :>Ny/x ~ L ® Oy
Taking duals in (1) gives adjunction formula

wy =~ wx ® Ny/x




| - Canonical Bundle

From 3264 [1]:

Corollary
If' Y C X is a non-singular curve in a complete surface X then

deg Ky = deg ((Kx + [Y])[Y])




| - Canonical Bundle
Example

@ Take X =P"and U, = {x; # 0}. If Xo, ..., X, coordinates
for P", x, = % on U; (for k # i), then top dimensional
form w|y. is

wly, = dxg A -+ A dx,




| - Canonical Bundle

Example
@ Take X =P"and U, = {x; # 0}. If Xo, ..., X, coordinates
for P", x, = % on U; (for k # i), then top dimensional

form w|y. is
wly, = dxg A -+ A dx,

o If y = Xk on U;, we have transition functions

o Iw/yi k#
g”f(xk){l/y,- k]




| - Canonical Bundle
Example

o Gives differential




| - Canonical Bundle
Example

o Gives differential

1 .

Ly, — Ydy, k
dgij(xk) = {”1?, e P 7_£J

y_l_2 Vi =J

e Gives pushforward

U)_ *(dxl/\--~/\dxn)
_ (=)

Ton+1
i

d.yl/\ /\dyn




| - Canonical Bundle
Example
o If H=Z(X;) C X =P"is any hyperplane, we have
Div(w) = (—n—1)H

and
Kpn = (—n — ].)C
where ¢ € AY(IP") is class of hyperplane, and lastly

UJEDn ~ O]P)n(—n - ].)




| - Canonical Bundle

Alternatively: [3]
@ For X =P" and Y = Spec A, Euler's exact sequence is

0 — Qx/y = Ox(—1)¥" — Ox =0




| - Canonical Bundle

Alternatively: [3]
@ For X =P" and Y = Spec A, Euler's exact sequence is

0 — Qx/y = Ox(—1)¥" — Ox =0

e Taking dual gives us
0= Ox — Ox(1)""! = Tx =0

since wyx = /\"Jrl Qx /vy, we take n+ 1 exterior product of
first sequence to give us isomorphism wps >~ Opn(—n — 1)
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II - Characterization of Elliptic Curve

Characterization
of Elliptic Curve

Definition (Elliptic Curve)

A curve over a field k is an integral scheme C of finite type

with dim C = 1.
We say that C is an elliptic curve if deg C = 3.

e In particular, we consider elliptic plane curves C C P?




II - Characterization of Elliptic Curve
Canonical Bundle of Elliptic Curve

e Adjunction Formula: for a non-singular irreducible closed
subscheme Y C X of codimension 1, have

Wy >~ wx ®Ny/x ~ wX®Ox(Y)|y

Il -
Characterization
of Elliptic Curve




II - Characterization of Elliptic Curve

Canonical Bundle of Elliptic Curve

e Adjunction Formula: for a non-singular irreducible closed -

Characterization
of Elliptic Curve

subscheme Y C X of codimension 1, have

Wy >~ wx ®Ny/x ~ wX®Ox(Y)|y

@ [3] When X =P" (n > 2) and Y is non-singular
hypersurface of degree d,

wy >~ wpn(Y)|y = Oy(d —n—1)




II - Characterization of Elliptic Curve

Canonical Bundle of Elliptic Curve Crarscerizaton

of Elliptic Curve

Since any elliptic plane curve C C P? has d = deg C = 3 then
we =~ OC

and

pg(C) =dimT(C,wc) =diml(C,O¢) =1




II - Characterization of Elliptic Curve

Application to Physics -

Characterization
of Elliptic Curve

@ A separated, smooth scheme X of finite type is said to be
Calabi-Yau if

C1(7;() =0 wx ~ Ox




II - Characterization of Elliptic Curve

Application to Physics -

Characterization
of Elliptic Curve

@ A separated, smooth scheme X of finite type is said to be
Calabi-Yau if

C1(7;() =0 wx ~ Ox

@ The only complex Calabi-Yau 1-folds are elliptic curves




II - Characterization of Elliptic Curve

First Chern Class of Curve -
Let X C P? be a curve and £ = L(D) be the invertible sheaf of Elliptic Curve

associated to some divisor D

@ By definition we have

QX/k = ,C(Kx) = 7;( = QB/(/k = [,(—Kx)




II - Characterization of Elliptic Curve

First Chern Class of Curve
Let X C P? be a curve and £ = L(D) be the invertible sheaf

associated to some divisor D
@ By definition we have
Quk = L(Kx) = Tx = Q) = L(—Kx)
e Recall ¢(€Y) = —ci(E) for locally free sheaf £

of Elliptic Curve




II - Characterization of Elliptic Curve

First Chern Class of Curve
Let X C P? be a curve and £ = L(D) be the invertible sheaf

associated to some divisor D
@ By definition we have
Quk = L(Kx) = Tx = Q) = L(—Kx)
e Recall ¢(€Y) = —ci(E) for locally free sheaf £
@ Since dim X =1, have Qx/k = Wy

of Elliptic Curve




II - Characterization of Elliptic Curve

First Chern Class of Curve
Then

& (Tx) = al£(-Kx) = ~a(£(Kx)) = —a(wx) = —Kx

Il -
Characterization
of Elliptic Curve

From above (and [1]) we know that
Kx = (d —n—1)C

where ¢ = ¢1(Ox(1)) € AY(X) class of hyperplane section.
Then

a(Tx)=(n+1-d)¢
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@ So far, we have characterized elliptic curves as the simplest
members of the broader space of Calibi-Yau schemes.

@ There are more specific things we can say about elliptic Riemann-Roch
curves, but we will need to rely heavily on the
Riemann-Roch Theorem to prove anything useful (also
Riemann-Hurwitz).

e Notation in this section will blend Perrin [4], Gathmann [2]
and Hartshorne [3]




IIl - Riemann-Roch

Sheaf Cohomology

As described in [4], taking global sections of the exact sequence

of Ox-modules Riemann-Roch
O=F—=G—=>H—=0

yields an exact sequence
0—=T(X,F)—=T(X,G) 5 T(X,H)

where 7 need not be a surjection.




IIl - Riemann-Roch

Cech complexes

@ Given a sheaf F on the scheme X and fixed open cover
{U;}, define an abelian group Riemann-Roch

= ] FW,nU,N...0U,)

ip<.. </p

where o € CP is a collection of independent sections

a,....i, of F.

lo




Elliptic Curves

IIl - Riemann-Roch

Chris Dare,
Stephen Timmel

Cech complexes

e Define a boundary operator d? : CP — CP*! composed of
the sections i -

Riemann-Roch

p+1

k
(dpQ)i()vilv“aierl - Z(_l) Qly,.oyik—1,ik4 15 eript1

k=0 U;lmU,-zm...mU,-pH

o The (—1)* term guarantees that dP*! o d? = 0, so we
know ker(dP™!) C im(dP)

@ In general, this inclusion is strict, so no exact sequence yet.




IIl - Riemann-Roch
Cech complexes

@ We can force the dP to form an exact sequence by taking a
quotient

o Defining HP(X, F) = ker(dP)/im(dP~!) and defining the
degenerate cases p < 0 using CP =0 and d? = 0, we get
HO(X, F) = ['(F) and the exact sequence

0— [(F) = T(G) = T(H) = HY(X,F) = HY(X,G) — ..

(proved by diagram chasing)

@ This embeds the exact sequence we wanted in an infinite
sequence of unknown terms.
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Additional Remarks

@ This construction gives the same result independent of
1 -

Open cover Riemann-Roch
@ Proof idea from §8.5 of [2]
o First show that affine schemes satisfy H'(X, F) =0 for i > 0
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Additional Remarks

@ This construction gives the same result independent of
open cover Riemann-Roch
@ Proof idea from §8.5 of [2]
o First show that affine schemes satisfy H'(X, F) =0 for i > 0

@ The restriction map from l:I”(X7 F) defined on the open cover
{Uo, Uy, ..., Uy} to HP(X, F) defined on the open cover
{U1, Us, ..., Uy,} is an isomorphism




IIl - Riemann-Roch

Additional Remarks

@ This construction gives the same result independent of

open cover

@ Proof idea from §8.5 of [2]
o First show that affine schemes satisfy H'(X, F) =0 for i > 0
@ The restriction map from l:I”(X7 F) defined on the open cover
{Uy, Us, ..., Uy} to HP(X, F) defined on the open cover
{U1, Us, ..., Uy,} is an isomorphism
e By repeated application of the above, we can add and remove
any number of open sets from the cover.
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i -
Riemann-Roch




IIl - Riemann-Roch

Motivation

@ Since curves have dimension 1, we know that
dimcH'(X, F) =0 for i > 1 [4]

@ To use our long exact sequence, we need some knowledge
of dimkHl(X,f)

@ Riemann-Roch will help us evaluate the difference
dimkHO(X, ./r) - dimkHl(X,]:)

o We will need some additional knowledge of dim,H*(X, F)
when we apply the formula [2]




IIl - Riemann-Roch

The Riemann-Roch Theorem .
It C is an irreducible projective curve of degree d and genus g, Riemann-Roch
we have for all n the relation of graded components

dim, H°(C, Oc¢(n)) — dimHY(C,Oc(n)) = nd +1 — g




IIl - Riemann-Roch

Proof (mostly from [4] VIII.1.5)

o Let A= k[Xyp,...,X,]/I(C) and note that A has
associated sheaf Oc¢

@ Let H be some hyperplane not containing C, and suppose
the equation of H corresponds to h € A

@ Defining ¢ to be multiplication by h, we get the exact
sequence

0— A1) S A— A/(h) — 0




[l - Riemann-Roch
@ Mapping this sequence to sheaves and shifting by n, we get
0= Oc(n—1) % Oc(n) = Ocrm(n) — 0
@ If we define for convenience
x(Oc(n)) = dimyH°(C, Oc(n)) — dimHY(C, Oc(n))
our exact sequence gives us the relation

X(Oc(n)) = x(Oc(n — 1)) + x(Ocn(n))




IIl - Riemann-Roch

@ Since C has dimension 1, the intersection C N H has
dimension 0 and consists of finitely many points

e By dimensionality, dimH;(C,O¢) = 0 and we know that
dimkHo(C, Oc) = d/mkr((’)c) =d.

@ Simplifying and using induction, we get
X(Oc(n)) = x(Oc(n—1)) +d
X(Oc(n)) = x(Oc) + nd




IIl - Riemann-Roch

@ This leaves the expansion of x(O¢).
@ We have the identity W

HY(C,O¢) =T(Oc¢) = k

since the only functions over all of O¢ are constant.
o Therefore, dimyH°(C,O¢) = 1.




IIl - Riemann-Roch

e The last term dimH'(C, O¢) is sometimes used as an
alternate definition of the arithmetic genus

@ We are used to the arithmetic genus being the constant i -

Riemann-Roch

term of the Hilbert Polynomial.

@ To relate these two forms, we start with another form of
the Hilbert polynomial P(n) given in [3]

P(n) = x(F(n)) = Y _(~1)dimcH'(X, F(n))

i




IIl - Riemann-Roch

@ The constant term of this expression can be calculated as

r—1
8 = Z d/mkH’ I(C OC) Riemann-Roch
i=0

e In dimension 1, this simplifies to g = H(C, Ox)
@ Combining the terms we have already described, we get

dimH°(C, Oc¢(n)) — dimHY(C,Oc(n)) =nd +1—g




IIl - Riemann-Roch

Related Theorems
There are a number of equivalent statements that are commonly

associated to Riemann-Roch (most easily proved using Serre
d ua | |ty) IRl:e_marm-Roch
@ Let K be a canonical divisor

dimH°(D) — dimH(K — D) = deg(D) +1 — g
e (Riemann) For large n, we have

dim(C,Oc(n) =nd +1—g




IV - Rieman-Hurwitz
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Motivation

@ So far, we have developed tools for understanding the
dimension of global sections over sheaves

Vv -
Rieman-Hurwitz

@ Riemann-Hurwitz gives a similar set of tools for individual
points through the ramification divisor.




IV - Rieman-Hurwitz

Ramification
@ Recall that for smooth curves the Picard group of divisors
is isomorphic to the set of line bundles Pic’

@ Given a smooth map f : X — Y we can define a pullback
map on divisors by pulling back the associated line bundles

@ Given a point P, we can treat its image f(P) as a divisor.
This lets us compute the subscheme f=1(f(P))

@ The dimension of this subscheme is the ramification index
ep at P.
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Vv -

e Y _—e Y Rieman-Hurwitz
Q 0
ep=1 ep=2

@ A point is unramified if its index is 1, and ramified
otherwise.

@ We will assume a field of characteristic O in this section
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Ramification Divisor

@ Define Q2x,y as before
@ The Ramification Divisor is defined to be

R=len(Qx/y)p- P

PeX

Vv -
Rieman-Hurwitz

@ We will demonstrate that this formal sum contains ramified
points counted with their ramification.




IV - Rieman-Hurwitz

Riemann-Hurwitz
(Riemann-Hurwitz) Let f : X — Y be a finite separable
morphism of curves and n = degf. Then

2g(X) —2=n-(2g(Y) —2) + degR
Additionally, degR satisfies

degR = Z(ep —1)

PeX
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Proof idea

@ The following sequence is exact

Vv -
Rieman-Hurwitz

O—>f*Qy—>Qx—>QX/y—>O

@ From this sequence, {2x/y is supported on the ramification
points of f.




IV - Rieman-Hurwitz

If £ has ramification index e at P we substitute t = au® for unit
a and differentiate

dt = aeu®'du + u®da
Finding the highest power with nonzero coefficient gives

length(Qx/y)p = € — 1

Note: We just proved the second part of the theorem
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o Let Kx, Ky be canonical divisors. Using the same kind of
local calculation as before, we can show (as in [2]) that -

Rieman-Hurwitz

Kx = f*Ky + R




IV - Rieman-Hurwitz

@ To convert this equation into the first part of the theorem,
note by Riemann-Roch that the canonical divisor has
degree 2g — 2 (substitute D = K into the alternate form)

dimHY(K) — dimH(K — K) = deg(K) +1 — g

e Noting that f* multiplies degrees by n = deg(f), we
expand

degKx = deg(f*Ky) + deg(R)
2g(X) —2=n(2g(Y) — 2) + deg(R)
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V - Properties of Elliptic Curves

@ So far, we have largely avoided discussing elliptic curves

@ The general theorems we have proved can be applied to
demonstrate some interesting properties of elliptic curves

V - Properties of
Elliptic Curves

@ We conclude by showing that the family of elliptic curves
over P" is indexed by k




V - Properties of Elliptic Curves

The j-invariant

@ The canonical parameterization ¢ : P! — K onto an
elliptic curve has ramified points where the curve has
branch points.

@ Given a branch point P, consider the divisor 2P;.

V - Properties of
Elliptic Curves

@ The linear system of equivalent divisors has dimension 1 by
Riemann-Roch (alternate form), so it induces a map
f: X — P! with degree 2.

@ Applying Riemann-Hurwitz to the map f gives four
ramified points.




V - Properties of Elliptic Curves

The j-invariant

@ We change coordinates to fix f(P!) = oo.

@ If the other two points are a, b we apply the following
transformation, which fixes oo and sends a, b to 0,1 = [

Elliptic Curves

, XxX—a
X =

b—a




V - Properties of Elliptic Curves
The j-invariant

@ We now have an elliptic curve with branch points 0,1, 0o, A
for some A

@ Define a function on A

(A —A+1)° i e
N2(\ — 1)2

ja)=2°

@ The 28 is a convenience that produces non-singular values
over characteristic 2, and the remaining terms are chosen
so J is an invariant, unique property of the curve K




V - Properties of Elliptic Curves

Claim
1. The value j does not depend on the choice of A for a given
curve K

2. The value j is unique to a curve K (two curves are e L
isomorphic iff they have the same j)

3. The family of elliptic curves covers all possible j




V - Properties of Elliptic Curves
Proof Idea

1. Consider two morphisms fi, f,. By diagram chasing, we can
find automorphisms 71, 7> so that f; and 72’11‘271 send the
same branch point to infinity.

To check permutations of the other three branch points, we

V - Properties of

can permute 0,1, A by o and find a map ¢ to transform Elliptic Curves
00,01 back to 0,1. The values ¢(c()\)) are generated by
the actions

A—1/A A—=1—=A

so we check that j preserves these actions




V - Properties of Elliptic Curves

3 Given a j/ € K, we can solve the original equation to find a
value of A with j(A) =j'. The equation

V - Properties of

y? = x(x — 1)(x — \) is an elliptic curve with j(\) = j’ e




V - Properties of Elliptic Curves

2 We proceed by proving an important lemma that will
render the original assertion trivial.

Lemma: Fix a branch point Py. There is a closed immersion
K — IP? whose image is

V - Properties of
Elliptic Curves

vy =x(x —1)(x = A)

This map sends Py to infinity, and this X is the same as before
up to the transformation ¢ o o described earlier.




V - Properties of Elliptic Curves
Proof of Lemma

e We start by generating a map from the closed immersion
sending the set of divisors equivalent to 3P to P? (this has
dimension 2 by Riemann-Roch)

@ We also know by the alternate form of Riemann-Roch that
dimH°(O(nP®)) = n (taking nP° as a divisor).
e Considering the inclusion

H°(O(2P,)) € H(O(3Py) € H(O(6P,)

we can choose x,y so 1, x is a basis for HY(O(2P,)) and
1,x,y is a basis for H'(O(3R))
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@ The monomials that can show up in an elliptic curve are
1,x,y,x% xy, x>, y? and are all contained in H°(O(6P,)),
so they cannot be linearly independent

e Our monomials only describe an elliptic curve when x3, y?
both appear with nonzero coefficient, and we can scale the

V - Properties of

coordinate system so both have coefficient 1. Eliptic Curves

e Writing down an arbitrary linear dependence and
completing the square gives

y* = (x—a)(x = b)(x — c)




V - Properties of Elliptic Curves

@ We can apply the same linear transformation used to derive
Jjtosend a,bto 0,1. This gives the final result

vy =x(x —1)(x = \)

@ Both curves have a pole at Py by construction, which is i S
sent to o0.

@ Projecting from Py to the x-axis gives a morphism sending
Py to infinity and ramified at the points 0,1, A\, 00, so A is
one of the branch points in our other derivation.




V - Properties of Elliptic Curves

Using the Lemma
Finishing our proof of (2):

@ j is a rational function of degree 6 which induces a map
A — j of degree 6.

V - Properties of

@ This covering is Galois because the functional spaces have — [Nt
automorphism group Ss.

e We already noted that specific elements of the automorphism

group correspond to permutations of the finite branch points.

@ Therefore, j(A) = j(X) iff X\, X’ are related by an
automorphism and the proof is complete.
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